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Introduction

This thesis treats several questions concerning linear differential equations.

We mainly consider differential equations over k(z), with k some field of char-

acteristic zero. Such equations are of the form L(y) := a,y™ +---+aqy = 0,

a; € k(2), here y™ denotes the n-th derivative of y with respect to some
d d

differentiation on k(z), for example 7~ or z. In this introduction we will

give an overview of the problems treated in this thesis.
e Can one give explicit solutions of a second order equation over k(z)?

To answer this question, we first have to define what we mean by an explicit
solution. It is quite natural to allow logarithms, exponentials and algebraic
equations in the description of a solution. This leads to the notion of Liouvil-
lian solutions. For example, the equation 4zy"” + 2y’ = y has the Liouvillian
solutions {ev?, e~V?}, but the Airy-equation 3" = zy has no Liouvillian so-
lutions. The famous Kovacic algorithm [Ko86] determines if a second order
equation has Liouvillian solutions. If they exist, the algorithm gives them
explicitly. One problem in actually implementing the algorithm is that the
solutions may involve some algebraic field extensions of the field of constants
k. An algorithm which determines for a given second order linear differential
equation the possible extensions of the constant field, is given in Section 1.1.

Another problem is how to obtain a compact presentation of Liouvillian
solutions. One way of doing this in the case of second order equations, is by
writing such solutions in terms of the solutions of certain standard equations.
Klein’s theorem precisely states that this is possible. We present a new proof
of this. The method of representing solutions via Klein’s theorem works well
because the standard equations are quite simple, and so are their solutions.
In section 1.2 we give explicit formulas for the transformations involved (the
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so-called pullback formulas).
One can ask whether this method can be extended to third order equations.
e Is there a variant of Klein’s theorem for third order equations?

In Section 1.3 we show that indeed there is. The difference with the second
order case is that we have to allow infinitely many “standard equations”. It
seems there is no obvious way to adapt the method of finding explicit for-
mulas for pullback maps to the case of third order equations.

A possible approach in studying differential equations is to try to make fam-
ilies of differential equations which share certain properties. In Chapter 2 we
make such families by prescribing the local behavior of the equations. We
show that we actually obtain so-called fine moduli spaces (classifying spaces)
in this way. To a differential equation one can associate its differential Galois
group, which gives information on the complexity of the solutions.

e How does the differential Galois group vary over a family of differential
equations?

This question is studied in chapter 3. More precisely, suppose we have a fam-
ily of differential equations parametrized by a space X. Given a group G, we
consider the subset X (C G) := {z € X]| the differential equation at z has
Galois group C G'}. We prove that this is a closed subspace of X. Using this,
we describe sufficient conditions on the group G such that the analogously
defined subset X (= G) is “constructible” (cf. Section 3.1). These results are
motivated by earlier work of M. F. Singer ([S93]).

Chapter 4 is concerned with the concept of monodromy. Let a differen-
tial equation L(y) = 0, with rational functions over C as coefficients, be
given. Write S := {s1,---,s,} for the set of singular points of L on the
Riemann sphere Pi.. Roughly speaking, the monodromy gives information
on how solutions of L change under analytic continuation. To be more pre-
cise, let b be a point in Pt \ S, and write V for the local solution space
of L at b. For a loop A in the fundamental group m (P% \ S,b) analytic
continuation along A defines a linear automorphism on V. The monodromy
is the natural homomorphism m; (P§ \ S) — GL(V) which arises in this way.
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The classical question, posed by Hilbert as the 215t problem of his famous
list, asks whether for any homomorphism p : 7 (Pg \ S) — GL(V) there
is a differential equation with monodromy given by p. For a more precise
formulation, see Chapter 4. This problem is known as the Riemann-Hilbert
problem. As stated here, the answer turns out to be ‘yes’. In this thesis we
extend the Riemann-Hilbert problem to families, i.e.,

e For a given family of monodromy maps, does there exist a family of
differential equations, such that the induced family of monodromy maps
is the given one?

Under some weak conditions on the monodromy maps (cf. Section 4.2), we
prove by explicit construction of a family of differential equations that the
answer is again positive. The families of differential equations used here
involve so-called vector bundles. To a vector bundle on P! one associates a
type. It happens to be the case that the type of the vector bundles, obtained
by the mentioned construction, may vary (over the space which parametrizes
the family). This leads us to a study of differential equations (or actually
connections) on non-trivial vector bundles in Section 4.3. An important
example in this setting is the so-called Lamé-example, which concludes the
thesis.
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Chapter 1

Pullbacks of Differential
Equations

This chapter discusses second and third order differential operators. We
will define standard operators, and proof that every differential operator
with finite differential Galois group is a so-called pullback of some standard
operator. We will also give an algorithm concerning certain field extensions,
associated with algebraic solutions of a Riccati equation.

1.1 Field extensions for Riccati solutions

In this section we consider second order linear differential equations of the
form L : y" = ry, r € k(z). Here k(x) is a differential field of characteris-
tic zero, with derivation %. The field of constants k is not supposed to be
algebraically closed. We will denote its algebraic closure by k. The differ-
ential Galois theory gives us an extension k() C K, with K the so called
Picard-Vessiot extension, which is the minimal differential field extension of
k(z) which contains a basis {y1, 2} (over k) of solutions of L. The solution
space k(yi,v2) := ky; + ky, C K will be denoted V. The automorphisms
of K/k(x) which commute with the differentiation constitute the differential

Galois group G.
An interesting class of solutions are the so called Liouvillian solutions. These

5
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are solutions which lie in a Liouvillian extension of k(x), which roughly means
they can be written down quite explicitly. For a precise definition of a (gener-
alized) Liouvillian extension, see [Ka76, p. 39]. Related to this is the Riccati
equation, denoted Ry, which is an equation depending on L with as solutions
elements of the form u = %, with y a solution of L. In our case it is the

equation u® + v’ = r. We have the following facts (see [PS03, p. 35,104]).

Fact 1.1 u € K is a solution of R, <= u = %, for some y € V.

Fact 1.2 u = % is a solution of Ry, algebraic of degree m over k(z) <
The stabilisor in G of the line k -y is a subgroup of index m.

The next fact is concerned with Liouvillian solutions of L.
Fact 1.3 L has a Liouwillian solution <= Ry, has an algebraic solution.

Let u be an algebraic solution of Ry, of minimal degree over k(z). We de-
fine the field &’ to be the minimal field in & such that the coefficients of
the minimal polynomial of u over k(z) are elements of k'(x). We want to
determine &’ as explicit as possible. In [HP95] bounds on the degree [k’ : k]
are given, depending on the differential Galois group G of L. We consider
G as a subgroup of GLy(k) by its action on yi, 1. It is known that G is an
algebraic subgroup of GLy(k). Note that changing the basis {y1, 4.} changes
G by conjugation. Because in our equation L there is no first order term, we

actually have that G lies in SLy(k), see [Ka76] p41l. We have the following
lemma, which is essentially Theorem 5.4 of [HP95].

Lemma 1.4 There are only three cases, with respect to G, for which k' can
be different from k. These are (on an appropriate basis):

(1) G c {( 8 a(fl ) | a € k*}, #G > 2, a subgroup of a torus.

(2) G = DSLz, a group of order 8, with generators ( (Z) —07, ) , ( (1) _01 )

(3) G = AS™, a group of order 24.
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We remark that in [HP95], the group D§L2 is mistakenly denoted by D4. We
have D, # DSLZ, and in fact DSLZ = ()3, where (g denotes the quaternion
subgroup {#1,44,+j, £k} C H*. The notations D;™* and A" can be
explained as follows. Using the natural homomorphism SLy, — PSL,, these
groups are the inverse image of Dy C PSL, and A, C PSLs, respectively. We
will treat these three cases separately.

1.1.1 Subgroups of a torus

In this section we consider case (1) of Lemma 1.4. There are exactly two
G-invariant lines in V. These correspond to the two solutions of Ry, in k(z).
Such solutions are called rational.

For the next lemma we need to introduce the second symmetric power of
a given differential equation. This is the differential equation with as solu-
tions, all products of two solutions of the given equation. For example take
L : y" = ry, with as basis of solutions {y;,y2}. Then the second symmetric
power of L, denoted Sym(L,2) is the equation y" — 4ry' — 2r'y = 0. It has
{y?, y12, Y3} as a basis of solutions. Indeed, {y?, y1y2, y3} are linearly inde-
pendent over k (compare [SU93] Lemma 3.5). In a similar way one defines
higher order symmetric powers Sym(L, n) (see [PS03] Definition 2.24), which
we will use later on. We note that Sym(L,n) can have order smaller than
n—+ 1. In the proof of the next lemma, we will also use that there is an action
of Gal(k/k) on K, which induces an action on V. It acts in the standard
way on k(z). For details see [HP95].

Lemma 1.5 Assume we are in case (1) of Lemma 1.4. Then Sym(L,2) has
(up to constants) a unique non-zero solution H € k(zx). If one of the two
rational solutions of R does not lie in k(x), then the rational solutions of R
are %icH‘l, for some c € k\ k,c? € k.

Proof. For the basis {y;,y2} for which the representation of G in SLs is
as in 1. we have that y,y, is G invariant, so y1y, € k(x). It is easily seen
that up to constants, this is the only G-invariant solution of Sym(L, 2). For
o € Gal(k/k) we have that o (y1%2) is another rational solution of the symmet-
ric square, so it must be a multiple of y,9,. Therefore we have a Gal(k/k)-
invariant line, and thus by Hilbert theorem 90 an invariant point on this
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line. After multiplying y; by a constant, we may suppose H := y;ys € k(x).

Then %’ = z—’i + z—g The rational solutions of R are Z—’i and Z—’j, and since
Gal(k/k) acts on the set of solutions of R, each one is fixed by a subgroup
of Gal(k/k) of index < 2. Now assume this index is 2, then we can write
Z—i =:u =: ug + duy, ug,u; € k(x),d?> € k,d ¢ k, and then Z_; = ug — duq, so
HI

%7 = 2up. From u' + u? = r € k(x) one deduces that 2ug = —Z—'i, SO u; must

be AH 1, \ € k*. Therefore we can take ¢ = d), and clearly Z—% = % —cH™.
O

We note that this gives a way to find in case (1) the rational solutions of the
Riccati equation. Indeed H can be found (for example using Maple), and ¢

can be calculated by substituting % + cH~! into the Riccati equation.

1.1.2 Klein’s theorem

In the remaining two cases of Lemma 1.4, the differential Galois groups are
finite. This implies that the differential Galois group equals the ordinary
Galois group. An important tool in studying these cases is Klein’s Theorem.
We present a version of it suggested by F. Beukers. For a different approach
we refer to [BD79].

It will be convenient to use differential operators. These are elements of the
skew polynomial ring k(z)[0,]. The multiplication is defined by 8,7 = 0,+1.
We will identify the linear differential equation ¥;a;y® = 0 with the differ-
ential operator ¥;a;0L.

We recall from [HP95] the following easy lemma.

Lemma 1.6 The k-algebra homomorphisms ¢ : k(t)[0;] — k(z)[0,] are given
by ¢(t) = a and ¢(8,) = 50, +b with a € k(z) \ k; o' := La and b € k(z).

First we will discuss the process of normalization. A second order differential
operator L := ap0? + 4,0, + aq is said to be in normal form if a; = 1 and
a; = 0. We can put L into normal form, Norm(L), by dividing L by a5, and
then applying the "shift’ 9, — 9, — 5. Note that normalization transforms
the old solution space V to f -V, with f' = %f. The operator remains
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defined over k(x), but the associated Picard-Vessiot extension K changes if

f¢K.

Notation 1.7

e For F € k(x)\k we define the k-homomorphism ¢ : k(t) — k(z), by
¢r(t) =

e Let ¢ be an injective homomorphism ¢ : k(t) — k(x). Then we also
write ¢ for the extension of ¢ to the homomorphism of differential
operators ¢ : k(t)[0;] — k(z)[0,], defined by ¢(0;) = ﬁ@w.

(x), we define @pp : kEt)[0;] — k(z)[0;] b

e For FF € k(z) \ k,b € k
)= (02 +0).

brp(t) = F, ¢rp(0;

e We will call an automorphism of k(t)[0,], given by t + t,0; — 0, + b a
shift.

e For a differential operator L € k(t)[8,] we define Aut(L) to be the group
{h € Autgzk(t) | Norm(yp(L)) = L}, where 4(0;) = ﬁ@t.

Klein’s theorem is concerned with differential operators L := 92 —r with finite
non-cyclic differential Galois group G C SLy(k). If we again use the notation
H52 for the inverse image in SL, of a group H C PSLs, the possibilities for
such G are (up to conjugation): {DSt2 A3 S5 A5}, In [BD79] we find
for each such group G a standard operator, denoted Stq, which is in normal
form, and has differential Galois group G. These are:

Stpsa = 62+f_6t12+36(t—11)2 _n;:;Qt(tl—U’
Sty = 82+%t12+52)(t—11) %t(tl—l)’
Stara =+ 1o+ 5 1 ~ S8 I )

St g = 05 + %tl? * %(t —11) 3661010 i - 1)’
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The so-called local exponents of these standard equations are given by the
following table.

0 1 00
T 3[13|_nil _nl
Stpsia | 03 |11 |~ " m
St 1312 1 _2
A% | 401|303 3°7 3
Sf e |13|12| _3 _5
sgt? | 104|303 87 8
L3112 2 _3
StA§L2 4133 505

In the proof of Klein’s Theorem we will need the following lemma.

Lemma 1.8 Let L be a monic second order differential operator over k(x),
with finite differential Galots group G, and Picard-Vessiot extension K. Let
{y1,y2} be a basis of solutions of L, and write s := Z—;

(1) Normalizing L does not change the field K? := k(z)(s) C K.

(2) Let Ly € k(2)[0,] be a monic differential operator, which also has a basis
of solutions in K of the form {sy,y}. Then L, can be obtained from L by
the shift Oy — 0y — (£)'/(£).

yi/ [ \yt
If moreover G is non-cyclic and G C SLy(k), then also the following state-
ments hold.

(3) KP = K*! | the fized field of —1I in K.

(4) K = K?(/5).

(5) k(s) is G-invariant and 3 t € k(x) such that k(s)¢ = k(t).

Proof.

(1) This follows immediately from the fact that the normalization of L has
a basis of solutions { fyi, fy.} (for some f with fTI € k(z)).

(2) The monic differential operator gbx,_(%y /(L) clearly has {sy, y} as a basis
of solutions, and therefore is equal to L;.

(3) Since k(z) C k(x)(y1,y2) is a finite extension, we have !, 5 € k(z)(y1, 12),
so K = k()(y1,2)- Because KP is algebraic over k(x) the derivation on K
induces a derivation on K*. So (¥.)' = % € E(m)(z—;), where d = yiys — yhv:-
It is easily seen that d' =0, and d # 0, so d € k". We find that y2 € K? and
for a similar reason also y2 € K?. So the only elements in G that fix l}(x)(g—;)
are +I. By Galois correspondence K? is the fixed field of {+TI}.

(4) We have K = K”(y,), and y% = 4, s0 K = K?(V/s').
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(5) From the G-action on k(yi,%,) one immediately finds that k(s) is G-
invariant. Since k(s) is a purely transcendental extension of k we get by
Liiroth’s theorem that the fixed field of GG is also purely transcendental. So
we can write k(s)¢ = k(t), and because ¢t € K is invariant under G, we get
t € k(). O

Theorem 1.9 (Klein)

Let L be a second order differential operator over k(x) in normal form, with
differential Galois group G € {D3%2, A" S7™ A"}, There exists an ele-
ment F € k(x) such that Norm(¢r(Stg)) = L. Moreover ¢r : k(t) — k()
is unique up to composition with an automorphism ¢ € Aut(Stg).

Proof. We will use the notation of the above lemma. Write GP := G/{£I}
for Gal(K?/k(z)) = Gal(k(s)/k(t)). The field extension k(t) C k(s) corre-
sponds to a covering of P} by P!, with Galois group GP. It is known that
for the groups G? C PGL(2) considered here, the map P! — P} is ramified
above three points. If necessary replacing ¢ by the image of £ under a Mobius-
transformation, these three points are 0, 1, co. The list of ramification indices
is (up to permutations of 0,1, c0):

GP |ey e1 ex
D, 2 2 n
Ay 2 3 3
Si 12 3 4
As |2 3 5

We choose ¢ such that we get precisely the above ramification indices for
0,1, c0.

We now want to construct a differential operator in k(t)[0;], with differential
Galois group GG, and with Picard-Vessiot extension some field K, such that

K? = k(s). As suggested by F. Beukers one takes K := k(s, Vs'), where ’

denotes the unique extension of the derivation % on k(t). We write V for

the solution space of L in K, and we define 1} := E(\/Ss—,, \/18—,) C K;.

Lemma 1.10
(1) The field K, does not depend on the choice of t. B
(2) K is a Galois extension of k(t), and we can identify Gal(K,/k(t)) with
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G. The vector space Vi is G-invariant, and isomorphic to V' as a G-module.
(3) Vi does not depend on the choice of s.

Proof.

_ attb _ — ds _ dsdh _ ds 1
(1) For t; = &3y, ad —be = 1, we have @ = GG = Griggp, S0

Fls, /%) = ls, gy /) = B(s, /).

(2) We will show that K is the splitting field over k(t) of P, P, where P is
the minimal polynomial of s over k(t), and P is the minimal polynomial of
V's' over k(t). By construction the extension k(t) C k(s) is Galois, so all ze-
roes of P; lie in k(s). The only thing that remains to be shown is that all roots
of P, lie in K;. This minimal polynomial is a factor of []__.,(T? — o(s")),

n o ’ s _ a b
and o(s') = o(s) = Gnray for o = ( e d
+Vs'

polynomial of v/s' are of the form o rq» and therefore lie in Kj.

We can define an isomorphism V' — V;, by y; — %, Yo % This induces
a G-action on V;. A direct computation shows that this action extends to a
G-action on K, extending the existing G-action on k(s). The invariant field
in K under this action is k(t), as can be seen from the inclusions

oeGP

>. So all zeroes of the minimal

k(t) € k(s) C K.

We also conclude from this that G = Gal(K/k(t)).
(3) We have (218)" = s/-2¢=b¢ " and it immediately follows that Vi does not

cs+d (cs+d)??
change if we replace s by ZSSIS, ad — bc = 1. Note that changing ¢ in general
does change V;. 0

We continue the proof of Klein’s Theorem. Since the 2-dimensional vector
space V] is invariant under the Galois group of K; over k(t), it is the solution
space of some monic second order differential operator Mg over k(t). Clearly
K is the corresponding Picard-Vessiot extension. Further s = (ﬁ) / (ﬁ),

so k(s) is the corresponding subfield.
Claim: Mg = Stg.

We note that a monic second order differential operator with three fixed
singular points is completely determined by its local exponents (see [PUOO]
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Chapter 5). The singular points of the differential operator Mg are {0, 1, c0}.
So to prove the claim, it suffices to show that the local exponents of Mg
and Stg coincide for every singular point. We can calculate the local expo-
nents of Mg. We give the calculation for ¢ = 0. After applying a Mobius-
transformation to s (which is allowed), we can suppose that s is a local
parameter of a point above 0 € P;. So we get an embedding of complete
local rings k[[t]] C k[[s]], and we have t = 5% + xs%*! 4 ... where again
eo is the ramification index of the embedding k(t) C k(s) at t = 0. We find
s = t% + ---, so the power series expansion of the basis of solutions of Mg
looks like \/15_, = t%_% + .-+, and \/Ss_, = t%J’% + ---. Therefore the local
exponents at t = 0 are 3 & 5.-. In the same way we find the local exponents

at t =1,00 to be 5 & 5. and —3 + 5,— respectively. These are precisely the
local exponents of the standard operator, which proves our claim.

Since t € k(z), we can write t = F € k(z). We have that ¢(St¢) is a differ-
ential operator with corresponding intermediate field k(x)(s). By Lemma 1.8
the differential operator Norm(¢r(Stg)) also has k(z)(s) as corresponding
intermediate field, and L can be obtained from Norm(¢r(Stg)) by a shift.
Since both operators are in normal form, we must have L = Norm(¢r(Sts)).
This proves the existence of F'.

We now consider the unicity of F. First of all, note that the choice of
ramification indices over {0,1,00} of the covering P — P} still leaves us
some choice for ¢. To be precise,

e if GP = D, we can replace t by its image under an automorphism of
the P} which permutes {0, 1, 00}.

e if GP = D,,, n # 2 we can replace ¢t by 1 — ¢.

e if G* = A, we can replace ¢ by .

Lemma 1.11 Let ¢ € Autik(t) be an automorphism of P} respecting the
ramification data of the covering P: — P}. Then v € Aut(Stg).

_ azxtb _ :
Proof. Suppose we can replace ¢ by z,t = ¢£5, ad — be = 1, without

changing the ramification indices at {0, 1,00} of the covering induced by the
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field extension k(t) C k(s). The resulting vector space Vi can be written
as V1 = (cz + d)Vi. Let Mg be the monic dlfferentlal operator in k(2)[0,],
with solution space V;. We find that Mg = ) ———0azts _ (Mg). Indeed

(CZ+ cz+d’cz+d
¢az+b(MG) is a differential operator over k(z) with solution space Vl, and
+

multlplylng all solutions by cz+d corresponds to the shift 0, — 0, — —a- Be-
cause _]VIG is constrgcted in the same way as MG, we have that (bt(MG) Sta,
¢y k(2)[0,] — k(t)[0:). We find that (Ct+d @i Pese o (Stg) = Sta, so

ct+d’ct+d

b
s € Aut(Stg). O

We will now show that ¢z is unique up to composition with an element in
Aut(Stg). Our constructions give rise to the following diagram,

(z) C k(@)(s) C k(z)(y1,92)
U U
) © k() < (s, V5

=l

k

Now suppose we can write L = Norm(¢p(Stg)) for some P € k(x). Then we
can make a diagram as above, where the image of ¢ in k(z) is now P. As we
proved above, t is almost unique up to composition with some ¢ € Aut(Stq).
Therefore we must have ¢p = ¢p o 1, for some ¢ € Aut(Sts). a

Remark 1.12 It is not essential to consider differential operators over k(x).
Klein’s theorem remains valid over arbitrary differential fields with field of
constants k. We can still construct the field k(s), and the proof only involves
this field. °

Remark 1.13 In this remark we want to explain the following phenomenon.
Let C(z) C K¢ be a Picard-Vessiot extension for Stg, G € {S{*?, AZ**}. For
each G, we find two normalized differential operators in [PU00] with Picard-
Vessiot extension equal to K¢ (and satisfying certain nice properties). They
correspond to the two irreducible two-dimensional representations of G. One
of these two operators is Stg. Write L for the other operator. By Klein’s
theorem, we have that Lg is a pullback of Stg. On the other hand we will
show that St is not a pullback of Lg, so Lg cannot be used as “standard
operator” in Klein’s theorem.
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We will now explain this phenomenon in detail. First we consider the case
G = S}™. The two operators of interest are

St prpot 2z 11011
59 T 1622 9(z—1)2 576z(z—1)
31 2 1 173 1
L e R S R Sy
=% T 62 T9@=1)7 562 —1)

The local exponents of St s, and Lgst, are given by the following table.
4 4

St §SL2

LSsz

Using the pullback formula of Theorem 1.31 we find that

(x — 1)(1442® — 232z + 81)3 Llbe F"
(28x — 27)* T 2R

LS§L2 = qu,b(StSELQ), F =

As we will see in Lemma 1.19, the difference of the local exponents of L S5
in a point a is equal to the ramification index of F' at a times the dn‘ference
of the local exponents of St PRE in F(a). This is in accordance with the fact
that the difference of the local exponents of L 5t at oo is 2. Indeed, F has
ramification index 3 at oo, and the difference of the local exponents of St 502
at 0o is 1 (and F(oc0) = 00). It also follows that St §5t2 cannot be ertten as
a pullback of Lstz The complete ramification data of F' are given by the
following figure.

X

< KX
T

1
® P,
o

]Pal

1

- ¢ X
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We note that the local exponents of ¢p(St st,) at the ramified points (# 00)
4

above 0,00 lie in %Z (see the proof of Lemma 1.19), but after applying the
FII

shift over 5z, the local exponents become {0, 1} at these points.

We will now explain how the representation of th on the solution space

changes by applying the pullback ¢rp. As in the proof of Klein’s theorem
(using the variables z, u instead of ¢, s), we can write K = C(u, V'), ' = 4

for the Picard-Vessiot extension of StSSLQ. The solution space of StSSL2 is
4 4

Vo= (\/“17, \/117), and K? := K*! = C(u). We can assume that the ram-

ification data of C(z) C C(u) is as in the proof of Klein’s theorem. Let
W := (w1, ws) be the solution space of Lst,, and define s := 5—; Then the
4

group Sy acts on C(s), and we define C(¢) := C(s)%4, with the appropriate
ramification data. These constructions give rise to the following diagram.

C(z) c C)(s) =Cu) C Clu,vu')
U U
Ct) C C(s)

We have t = F' € C(z), and s is some rational expression of degree 7 in u,
say s = g(u). We will now calculate g.

The extension C(z) C C(u) has degree 24, and using [BD79], we find that
we can write x = h(u), where

C(Wf + Mt +1)°
108u*(ut — 1)*

h = + 1.

We can also take t = h(s), so t = F(z) = F(h(u)) and t = h(s) = h(g(u)).
Therefore g satisfies h(g(u)) = F(h(u)). Using the ramification data of F
and h, we can calculate the ramification data for g. Using these ramification
data, together with some heuristics, we find

(w4 7)
I= T +1
We can now express W in terms of u and v/u'. We have 4 —= “1%2-W1% a4

dx wj
since the operator LSSL2 is in normal form wjw, —wiw) € C. So we find that
4
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u n u u(ut—
W = (\/is—,, ﬁ), "= L Clearly £ = d‘(’i(u) % and d";—(u) = —21( 7(u4+1))2. So

we find a basis for W in terms of u and v/2/, namely
{u2(u4+7) Tut +1 N
(wt — DV ulut — )V

We will now examine the group SSL2 in detail, and we will see how we
can distinguish between the two irreducible representations pi, py of S3-2
in GLy(C). The abstract group S;™* is generated by two elements o, 3,
with image (1234), (12) in Sy respectively. For p; we take the representation

S5 — GLy(C), o = ( %‘ ngl ), B — %( - ), (s=e* (see [Ko86|
p.30). Then for p; we can take the representation obtained by composition
of p; with the automorphism of Q(¢g) given by (g +— (3. We remark that
the induced representations of S; in PGL(2, C) are conjugate. We can dis-
tinguish p; from p, by the eigenvalues of p;(c). For p; these are {(s, ('}

and for p, they are {¢3, 3%}

We fix an identification of Gal(K/C(z)) with S;"2. We remark that since
the group Out(SSL2) has two elements, there are essentially two ways to
do this. We may assume that SSL2 acts on V via the representation p;.
So a(5) = G4 and a(gz) = G- We will now calculate the ac-

tion of o on W. We have a(u) = (Zu, so a(%) = g(’;i(“l)f} and
oz((z;“ifl) G u1“4$iﬁ It immediately follows that the representation

of S§™ in W is conjugate to py, which is what we wanted to show.

Now consider the case G = AS™. We will use the same terminology as
in the S;"?-case. The equations of interest are

Gipmgsd L2 1 eu
a5 1622 ' 9(z—1)2 3600z(z —1)’
31 2 1 899 1

L = 82 — — .
Az 622 T9@—1? 36002(x 1)

We have that L su, is a pullback of St ;si,, with pullback function
5 5
(1 — z)(1474562* — 40345623 + 37929622 — 57591z — 59049)3
(166422 — 2457x + 729)5

The ramification of F' is given by the following diagram.

F= + 1.
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=< X
2
7 o

® o P
1 o0

=9 ¢ XXXXXX
X

As in the S;™ case we have the following diagram.

C(z) ¢ Cu) c Cu,Vu)
U U
Ct) c C(s)

Again write z = h(u) and s = g(u). In the same way as in the S;>-case, we
find

(u®® — 228u’® + 494u'® + 228u® + 1)3

h= 1
1728ub(u!® 4+ 11ud — 1)° *
_uP(u'® — 39u° — 26)
97 T 26ul0 — 3905 — 1
We have W = (\/i;,,ﬁ), '=4 and £ = d‘fi(:) - u  Using the fact that
d“(’i—(u“) = —78(%)2, we obtain the following basis for W

w?(u'® — 39u® — 26)  26u'® —39uS — 1

{(uw + 11u5 — 1)V w(ul® 4 11us — 1)\/17}

The group A;™ has two irreducible representations pi, ps in GLy(C). We have
that AS™ is generated by two elements «, 3, with image (12345) and (12)(34)
in A; respectively. We fix p; to be the representation of AZ™2 in GLy(C) given
byarm (G L), 80 (5 %) Go=e®,a= L3k -G +4C0-2),
b= £(¢3y + 3¢% — 2C10 + 1). This explicit formulas come from [Ko86] p.30,
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note that we can also write a = i4/% + %\/E_), b= @a. Then ps is the rep-
resentation obtained by composition of p; with the automorphism of Q((i)
given by (1o — (3. In contrast to the S{™*-case, the induced representations
of A5 in PGL(2,C) are not isomorphic. As in the Sf“-case, we can distin-
guish p; from p, by the eigenvalues of p;(a). For p; these are {(ig, (4 } and

for py they are {¢3, ('}

Fix an identification of Gal(K/C(z)) with A5">. Again there are essentially
two ways to do this. We may assume that A§L2 acts on V' via the representa-
tion p;. So a(#) = (o and a(ﬁ) = Cfolﬁ- Again we calculate the ac-
u2(u10—39u5—26)) _ 3 u’(u'%-39u5—26)
(w04 11u5—1)vu! 10 (41041165 —1)Va!

It follows that the representa-

tion of  on W. We have a(u) = (%u, so o

26ul0—39u5—1 ) — €—3 26ul0—39u5—1
u(ul04-11ud —1)vu! 10 (w04 1105 —1)Va!
. To -+ . .
tion of AE >in W is conjugate to ps. °

and

Only for some specific F' € k(z) the differential operator Norm(¢r(Stg)) lies
in k(z)[0;]. The next corollary makes this precise.

Corollary 1.14

(1) Norm(¢r(Stg)) is defined over k <=V o € Gal(k/k) 3 S(0) € k()
such that ¢ss) € Aut(Stg) and dor) = dr 0 ds(0).

(2) Furthermore, ¢r satisfies the equivalent properties of (1) if and only if
Or = oy, with f € k(x), and ¢y, an automorphism of k(t) satisfying
the equivalent properties of (1).

Proof.

(1) '«<="V o € Gal(k/k) we have o(Norm(¢r(Stg))) = Norm(o(¢r(Stg))) =
Norm(¢o(r) (Sta)) = Norm(ér o ¢s(s)(Stg)) = Norm(ér(Sta)), so the oper-
ator is Gal(k/k) invariant, hence has coefficients in k(x).

'=’ Because Norm (¢ (St)) is Gal(k/k) invariant we get Norm(¢r(Stg)) =
o(Norm(¢r(Sts))) = Norm(¢,(r)(Ste)) ¥V o € Gal(k/k). Hence Klein’s the-
orem gives ¢y = ¢r © Ps(s), With ¢gs) € Aut(Stg). This proves (1).

(2) The if-part follows immediately from ¢s(r) = @o(r) © Po(n) = B © Po(n)-
For the other implication write ¢o(ry = ¢ 0 Pg(s), With ¢y € Aut(Ste)
an automorphism of k() that permutes 0, 1, 00. Then there is also an auto-
morphism ¢, of k(t), with Po(h)y = On 0 ds(o) Y 0 € Gal(k/k). Namely, take
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h = ﬁ%, where ag, 1,0, € k are elements which are permuted in
the same way by every o € Gal(k/k) as 0, 1,00 by @s(,). These elements are
proven to exist in the lemma below. Note that for such ag, a1, as the exten-
sion k(ag, a1, as)/k has degree at most 6. Define f € k(z) by ¢5 := ¢prod; .
Then ¢r = ¢ o ¢y, and we only need to show that f is Gal(k/k) invariant.
But we have that @y(s) = @p(r) 0 gb;(lh) = ¢F © P5(0) © (¢ © Ps(0)) ™" = @5 and
therefore f € k(). O

Remark 1.15 The above corollary states that every differential operator
02 —r, with r € k(z) is the pullback of a differential operator over k(z) with
three singularities, and with the same local exponents as the corresponding
standard operator (use Norm(¢y(Stg))). So we can see this corollary as a
“rational version” of Klein’s theorem. °

In the proof above we used the following lemma. Its content is well known,
and we prove it only for the sake of completeness.

Lemma 1.16 Given an action of G := Gal(k/k) on the set {1,2,3}, there

erists a Galois extension k C k(ay,aq,a3) C k, such that G permutes the set
{a1, as, a3} in the corresponding manner.

Proof. We first assume G acts as S3. Let H be the subgroup of G which
fixes {1,2,3}. Then F := k¥ is a Galois extension of k of degree 6. We
have an action of G/H = S3 on F. For some element o of order two in
Ss, write k(a;) = F?. Then k C k(ay) is an extension of degree 3, which
is not a Galois extension. Writing as, az for the conjugates of a; in F', we
have F' = k(a, as,a3). Furthermore G acts as Ss on the set {a1,a9,a3}. We
can rename the a;, in such a way that G permutes the set {a;, as,as} in the
desired manner. The remaining cases, where G acts as 1,5 or ('3 are easy.
O

Notation 1.17

o Let L € k(z)[0;] be an arbitrary second order differential operator,
with differential Galois group G C GLy(k). We write GP for the image
of G in PGL(2), and call G the projective differential Galois group of
L. This definition of G? is consistent with the definition of G? in the

proof of Klein’s theorem.
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e For L as above, and a € P*(k), we have a set of local exponents {l1,l5}
at a. We will call |l; — l3] the local exponent difference at a.

Again let L € k(x)[0,] be a second order differential operator, with projective
differential Galois group G? € {D,, A4, Sy, As}. We have that Norm(L)
has the same projective differential Galois group. Indeed L and Norm(L)
define the same field extension k(x) C k(z)(s) (notation from the proof
of Klein’s theorem), and we can identify GP with Gal(k(x)(s)/k(z)), where

b . .
o= ( CCL d ) € G? acts on s by o(s) = %. Consequently, the differential

Galois group of Norm(L) is an element of {D§L2,A§L2,SSL2_, A2}, Using
Klein’s theorem we find that there exist elements a, F,b € k(x), such that
L=a- ¢F,b(StG)-

1.1.3 Differential Galois group D5

For generality, we formulate the following theorem for differential operators
with projective differential Galois group Ds. This of course includes differ-
ential operators in normal form with differential Galois group DgLQ.

Theorem 1.18 Let L € k(x)[0;] be a second order differential operator, with
projective differential Galois group GP = D,. There erists a point a € P*(k)
for which L has local exponent difference in % + Z. For any such a there is
an algebraic solution of minimal degree of the corresponding Riccati equation,
with minimal polynomial in k(a)[z].

Proof. We will first show that we can assume L to be in normal form. We
can write Norm(L) = a - ¢ (L), for some a,b € k(x). If u is a solution of
the Riccati equation Ryorm(z), then u + b is the corresponding solution of
Ry. Writing f, for the minimal polynomial of u over k(z), we clearly have
fu € K'(2)[T] <= fuss € K'(z)[T]. Furthermore normalization does not af-
fect the local exponent difference at a point.

Klein’s theorem gives an F' € k(z) such that L = Norm(¢p(Sts)), where

G := D3". We will use notations as in the proof of Klein’s theorem. We
S

have that {—=, ﬁ} is a basis of solutions of Stg. Then {2, ﬁ} is
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!

a basis of solutions of L, where ' now denotes %. We find that the so-

lutions of Ry are precisely the elements F'u — %%, with u a solution of
Rsy,. From the explicit description of DSLQ in Lemma 1.4, we know that
there are six solutions of Rgy, of degree two over k(t), which correspond
to three minimal polynomials {P;, P, Ps}. By [HP95] 6.5.3 we know that
P, € k(t)[T],i=1,2,3. Let u be one of the six solutions of Rg;, of degree 2
over k(t). Write @ := F'u — EF for the corresponding solution of Ry. If P;

is the minimal polynomial of u, then F(P;) := (F')?P;(& + 3 (F" ) € k(x)[T]

is the minimal polynomial of @. Let k& C k be a minimal extension, such that
F € k(z). Then F(P;) € k(z)[T], so we can take k' C k, where k' is the
field defined in the beginning of this section. Because L € k(z)[0,], we have
that F' satisfies the properties stated in Corollary 1.14. Using notation as
in the proof of this corollary, we see that we can take k to be the extension
of k generated by the coefficients of h, so k = k(ag, a1, a). This is a field
extension of k£ of degree at most 6.

Claim: for any j € {0,1, 00} there is a solution of R; with minimal polyno-
mial in &(a;)[T]

The Galois group Gal(k/k) acts as a group of permutations on the set
{F(P),F(PR,),F(Ps)}. In fact o(F(P)) = o(F)(P,) for o € Gal(k/k). B
Corollary 1.14 we have ¢y = ¢ © dg() With dg) € Aut(Stg). We know
the polynomials P; explicitly, see Example 1. 21 A calculation shows that all
non-trivial automorphisms ¢g, S € {1,1—¢, 1=, 4, 5} act non-trivially on
the P;. Using this we see that there exists a Gal(k/k)-equivariant bijection
between {ag, a1, a5} and {F(P,), F(P), F(P;)}. This immediately proves
the claim.

Let f be as in Corollary 1.14 (2). If f(a) = a;, then k(a;) C k(a). So
the only thing left to prove is that there exist points a with local exponent
difference in § +Z, and that any such point satisfies f(a) € {ag, a1, as}. For
this we need the following lemma.

Lemma 1.19 With the above notation the following holds.
The extension k(t) C k(z) corresponds to a covering PL — PL. Suppose that

this covering is ramified with indez e in a point a € IF’}C(IZ:) lying above some
b € Pl(k). The local exponent difference of L = Norm(¢r(Stg)) at a is
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le(ly — la)|, where {l1,12} are the local exponents of Stg at b.

Proof. By a calculation as in the proof of Klein’s theorem, we find that the
local exponents of ¢r(Sts) at a are {ely,els}. The lemma now follows from
the fact that normalization does not change the local exponent difference at
a point. O

We continue the proof of Theorem 1.18. Using the above lemma, we see that
if a point a € IP’;(I?:) does not lie above one of the points 0, 1, oo, then the local
exponent difference of L at a lies in Z. If a does lie above b € {0, 1, 00}, then
the local exponents of Stg at b are {ly,l} = +{3, %}, so the local exponent
difference of L at a is in % + Z if e is odd, and in Z if e is even.

The only thing left to prove is that there exist points a € ]P’glc(l::), such that
L has local exponent difference in  + Z at a. By [PS03] Theorem 5.8, the
differential Galois group of L is equal to the monodromy group, so there is
a local monodromy matrix which has order 2 in PGLy(k). It follows that
the local exponents at the corresponding singular point have local exponent
difference in % + 7. O

1.1.4 Differential Galois group A}"

Theorem 1.20 Let L € k(x)[0;] be a second order differential operator, with
projective differential Galois group GP = Ay. There exists a point a € P(k)
for which L has local exponent difference in %Z\Z. For any such a there s
an algebraic solution of minimal degree of the corresponding Riccati equation,

with minimal polynomial in k(a)[z].

Proof. This case can be treated similar to the Ds-case above, now taking
G = A™. Again we will use notation of Corollary 1.14. We will only give
the differences with the proof of Theorem 1.18.

The Riccati equation Rg;, has eight solutions of degree 4 over k(t), cor-
responding to two minimal polynomials Py, Py, € k(t)[T] (see Example 1.22,
[HP95] 6.5.4, or [Ko86] 5.2). The group Aut(Sts) consists of two elements,
namely {¢;, ¢ . }. Therefore an automorphism of Stg can only permute
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the singular points {1,00}. This implies ay € k, k(a1) = k(a) = k, and
[k : k] <2. So F(P) = (F)'P(& + %(5,';2) € k(a1)[T] = k(aw)[T]. The
only thing left to prove is that all points a with local exponent difference in

sZ\Z satisfy f(a) € {a1,as}, and that there exists such a point.

The local exponents of Stg at the point 0 are {i, %} At the point 1 the
local exponents are {%, %}, and at the point oo they are {—%, —%} Now
Lemma 1.19 gives the following. The points with local exponent difference
in %Z\Z are precisely the points a € P! (k) lying above 1, oo with ramification
index not divisible by 3. To prove that indeed there are such points a, we
again use that the differential Galois group is equal to the monodromy group.
We may assume that L is of the form L = ¢p(Stg). It follows that if the
local exponent difference at a point lies in Z, then the local exponents lie in
sZ. If all local exponents lie in 1Z, then the monodromy group is generated
by elements of order < 2. This contradicts the assumption that G = AELZ,
because A3 is not generated by elements of order 2. O

1.1.5 Examples

In the following examples we will give explicitly the minimal polynomials of
solutions of Rgy, of minimal degree over Q(t), for G € {D5?, A3"?}. We
will also calculate these minimal polynomials corresponding to pullbacks of
standard equations.

Example 1.21 In the proof of Theorem 1.18 we showed that the Riccati
equation Rg,, G = D3™ has six algebraic solutions of degree two over

Q(t). Let {y1,y2} be a basis of solutions of St st,, on which the differential
2
Galois group G has the explicit form of Lemma 1.4. Then these six solutions
of the Riccati equation are L,y € {y1, y2, y1 + Y2, y1 — Y2, Y1 + 12, 1 — i¥2},
which are the solutions of the three polynomials
11 1 192 —7t+1

P=T?— (22— T +—— "~
! G =77+ 1% 2(t—1)2

11 1 1 13t2—-3t+1
P=T?_ (-4 -~ i
? Gtz Tt 2t—1)2"

1 1 1 192 —11t+3
Po=T*—(-4+-— T+ "=
’ S o ST 20t —1)2
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Now consider the function F' := xff/i, mapping 0, —v/2,v/2 to 0,1, 00 re-
spectively. We have that ¢ satisfies the properties of Corollary 1.14 (1), so
L := Norm(¢p(Stg)) is defined over Q. A calculation gives

3 3z2+42
L=0+>"—"+—"—.
o 8x?(x? —1)2

Using the formula in the proof of Theorem 1.18, we find that the six solutions

of Ry, of degree two over Q(x) are the solutions of the polynomials

_14x2—\/§x—2 18:54—4\/5333—93:2—#4\/5:5-1—2

T2
2 z(z?-2) N 8 x2(x2 —1)2 ’

1422 + 22 — 2 18z* + 4v213 — 922 — 422 + 2
R T+ — ,
2 z(2?2-2) 8 x%(2? —1)?
s 2(z2-1) +18x4—15x2+6
z(z? —2) 8 z2(x? —1)2

T2

We remark that the local exponent difference is % for each singular point of
L. This is in accordance with Theorem 1.18. In [HP95] it is stated that
[k : k] € {1,3} for G = D3". This does not contradict the fact that we find
k' = Q(v/2) for some of the solutions of Ry, because in [HP95] only fields &’
of minimal degree over k are considered. <

Example 1.22 We consider the standard equation Stg, G = AELZ. In
[Ko86] 5.2 one of the two minimal polynomials for solutions of Ry, of degree
4 over Q(t) is computed. It is the polynomial

Tt—3 5 487 —41t+9,_, 3208° — 409> 4+ 180t — 27

P =T~
! SMi—1) | 24P —17 43263(¢ — 1)3

T+

2048t* — 34843 — 2313t% — 702t + 81
20736t4(t — 1)* ’

The other minimal polynomial is P, := S(P;), S = 47, where we use nota-
tion of the proof of Theorem 1.18. A calculation gives

8t —3 , 5 6482 —49t+9 , 512> — 598t% + 225t — 27

P, =T -
? Si—1) | 24 —1) 43263(¢ — 1)3

T+
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—530t* + 278813 — 909¢%2 — 918t + 81
20736t4(t — 1)4 ’

Let a € Q, and define F := —22_ which maps 0, —/a, /a to 0, 1, co respec-

z—/a

tively. Then L := Norm(¢x(Stg)) is

82+3i_3 1 +§
1622 162%2—a 9

@ =

The local exponents at 0, —/a, /a are {3,3},{3, 2}, {3, 2} respectively. So
theorem 1.20 states that there is a solution of Ry, of degree 4 over Q(z), such
that the corresponding field &' lies in Q(1/a). A calculations shows that in

fact for each solution of Ry, of degree 4 over Q(z), the corresponding field &'
equals Q(v/a). O

1.1.6 Algorithm

We will now give an algorithm to compute a field £’ (as defined in the be-
ginning of this chapter). We will also give some examples.

Let L € k(z)[0;] be a second order differential operator in normal form
with known differential Galois group G in {D3™*, A7™>}. We can use theo-
rems 1.18 and 1.20 to find a field k¥'. Write L = 92 — %,T,N € k[z], where
gcd(T,N) = 1, and N is monic. Because G is finite, all singularities of L
are regular singular (see [PS03] Definition 3.9). Therefore, the zeros of N
can at most have order two. So we can write N = N; - N2, such that Ny, N,

have only zeros of order one, and are monic. We can make a decomposition

% = % + N%. Now the local exponents at some point p € k are the solutions
2 b
of the equation A(A — 1) = A'(fvzp)z s—p- S0 the local exponents A satisfy
2
AN —1) = S

Ny(p)*”

For the D,-case we search for points with local exponent difference in % + 7.
Because L is in normal form, the local exponents of L at such a point are

{2eil 320} for some n € Z. Therefore we get the system of equations:

(3 +4n — 4n?)Nj(p)? + 16 A(p) = 0

Do-case : { Na(p) = 0.
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To solve this system we can calculate the resultant of (3 + 4n — 4n?) N} (z)%+
16 A(x) and Ny(x) with respect to z. This gives a polynomial in n, for which
it is easy to determine if it has integer solutions. If this resultant is zero for
some ng, then we can substitute n = ng into the system of equations. Then
solutions of the system are given by ged((3+4ny—4n3)(N5)?+ 164, N,) = 0.

For the Ay-case we search for points with local exponent difference in 3Z\Z.
At such a point the local exponents are {?’J“T", ?’_T”}, for some n € Z. We find
the system of equations:

(9 — n?)N;(p)* + 36A(p) = 0
N2 (p) = 05
We search solutions, with n Z 0 mod 3. This system can be solved in the

same way as in the Dy-case. We conclude that for a differential operator L
satisfying our assumptions, we can find a corresponding field &’.

Ay-case : {

Example 1.23 We will demonstrate the algorithm for

Lo s 1628 — 2882'° + 216022 — 89472° + 207452° — 250562° + 13456
e 8(z% — 926 + 2723 — 29)222 '

This is the operator obtained as the pullback of St st, with F' = ho (z3-3),
2

where h is some automorphism of k(¢) that sends the roots of z*® — 2 to
{0,1,00}. With the notation of the algorithm we have

T = $(162'® — 28825 + 2160x'% — 89472 4 207452° — 250562° + 13456),
N = (z° — 92° + 2723 — 29)%22.

We calculate N, by N, = ged(N, N') which obviously is (z° —92%+272%—29)x
and furthermore A = T'. Using for example Maple we find that the resultant
of (3 + 4n — 4n?)(N})? + 16 A and N over z is

(457668486144n3 —1373005458432n* + 1373005458432n° — 457668486144n5)3
(29435 + 3364n — 3364n?). This expression has as integer solutions n = 0 and
n = 1, which both correspond to the same set of local exponents. Substitut-
ing n = 0 we get ged(3N5+16A, Ny) = 2 — 92°% +272% — 29, a polynomial in
23, with as a solution a := (34 23)3. So there is a field & C Q(a). We know
that [k : k] < 3,s0 k' =k or [k’ : k] = 3. We can calculate all subfields of
Q(a) of degree 3 over QQ in Maple 7, with the command

evala(Subfields(x~9-9x"6+27x"3-29,3));
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It turns out that the only such subfield is Q(v/2). It follows that there is a
field k' C Q(v/2). &

Example 1.24 Let h to be the automorphism of P! sending 1, —v/2, /2 to
0,1, 00 respectively. Let f =22 — 3, and F = ho f, then Norm(¢r(St4,)) is

27212 — 540210 + 414528 — 163662° + 37160x* — 4687222 + 21168
(6x(z — 2)(x + 2)(z* — 622+ 7)? '

02 —

As before we write this as 92— (Nig—i— ). The resultant of (9—n?)(N3)*+36A
and N, is —2%83%7%(n — 6)(n + 6)(2n — 3)?(2n + 3)*(n — 1)*(n + 1)*. The
integer solutions for n are n € {—6,—1,1,6}. So only n = 1 (which gives
the same as n = —1) is of interest, for —6,6 = 0 mod 3. We now substitute
n =1 into (9 — n?)(NNy)? + 364, and calculate the greatest common divisor
with Np. This gives the polynomial z* — 62% + 7 = (z — 3)> — 2. A zero
of this polynomial is @ = v/v/2 + 3, so there is a field k' of degree < 2 over
Q in Q(\/ V2 + 3). By a calculation in Maple 7 we find that the only field
extension of Q of order 2 in Q(\/ V2 +3) is Q(v/2). Therefore there is a field
k' C Q(v/2). Note that in this example we can explicitly calculate k' from
knowing only the operator and the differential Galois group. &
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1.2 Algorithms for finding the pullback func-
tion

The material in this section is joint work with Mark van Hoeij and
Jacques-Arthur Weil.

Let L = 02 + 410, + a¢ € k(z)[0,] be a monic order 2 differential operator.
We suppose the differential Galois group G over k() is known and is a finite
subgroup of GL(2, k). We will write G? for the image of G in the PGLy(k).
The normalization Norm (L) of L is obtained by a shift 9, +— 9, — %, and we
write G" for the differential Galois group of Norm(L). We assume G" is non-
cyclic, which implies G™ € {A5">, S7™2, AS™ DS'2}. By Klein’s theorem we
have Norm (L) = Norm(¢z(Stgn)), for some F € k(x). Therefore 3 b € k(z),
such that for ¢ := ¢rp we have L = (¢(t)')2¢(Stgn).

In this section we will concentrate on finding ¢(¢), which we will do case
by case with respect to GP. We will define new standard equations Stg»,
with projective Galois group GP?, for G? € {A4, Sy, As, D, }. For this stan-
dard equations Klein’s theorem still holds, and we are able to give an explicit
formula for ¢(t).

Notation 1.25

o Let ¢ : k(t)[0,] — k(2)[0,], 9(0;) = ﬁ(&c + b) be a homomorphism.

Then we call ¢(t) the pullback function corresponding to ¢.

o Let Ly € k(t)[0)], Lo € k(x)[0,], be differential operators, such that we
can write Ly = agpp(Ly),a, F,b € k(x). If b =0, we call Ly a pullback
of Li. If b # 0, we call Ly a weak pullback of L.

1.2.1 Projective Galois group A,

We define the following new standard equation:

8t+ 3 S 1

B .
i+ ) e T TR

StA4 = 8752 +
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This differential operator is obtained from St A2 by first making the shift

0y — 8t+4t+3(t 1) , and then applying the coordmate transformation t — t+1

So Sty, = ¢+ (St 4s1,). We will now motivate this new choice of a
t+1’4t 12(t+1) Ay

standard operator.

From the fact that the projective differential Galois group of St A5 is Ay,
it follows, using some representation theory, that this operator has solutions
Y1, -+ ,ys such that % € k(t). This translates into the existence of a
degree one right-hand factor of Sym(St A5t 4). In fact there are precisely

two such right-hand factors. By a direct computation, we find that these
right-hand factors are 0; — % — 3(t 0 and 0; — 3(t5_1). We constructed St 4,
such that Sym(St4,,4) has a right-hand factor 0;. To see this, note that for
any differential operator L, we have Sym(¢ss(L),n) = ¢rn(Sym(L,n)). So

applying the shift 0, — 0y + 4t + (t iy to St A5 gives a differential operator

St = 0? + Gztt 31 0y — m with the property that Sym(gt, 4) has a right-

hand factor 0;. The coordinate transformation ¢ — tj% does not changes
this property, and will make the pullback formula in Theorem 1.27 some-
what nicer. Note that applying the shift 0, — 0, + 4% + % to StAiLQ also
results in a differential operator such that its fourth symmetric power has a
right-hand factor ;. This differential operator is different from St. There is
a non-trivial automorphism of k(¢)[0;] mapping St4, to a multiple of itself,

namely ¢t+1,12(t1+1) It follows immediately from the proof of Klein’s theorem

that this is the unique non-trivial automorphism of St4,.

Proposition 1.26 The differential Galois group G of Sta, is a central ez-
tension of Ay by the cyclic group Cly.

Y1 Yo
where {y1,y2} is a basis of solutions of St4,. The determinant Det(F') of F,

satisfies the differential operator 0, + 6?&131) = /\2 Sta,. For g € G, we have

g(Det(F)) = Det(g) - Det(F), so the differential Galois group of d; + 6%131 is

precisely the image of G under the determinant map. The differential Gafms

group of 0y + Gfttf‘l) is easily seen to be the group pg consisting of the sixth

roots of unity. So G C H := {M € GL,(Q)|Det(M)S = 1, M? € A}, where
MP denotes the image of M in PGL,(Q).

Proof. Let F' be a fundamental matrix for St,,, i.e., a matrix ( y} y? ),
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By a calculation in Maple, we find a basis {y1,y2} of solutions for Stu,,
with y19, = /%Lyt = ‘/g(“_l)+fv‘12_“+l,a3 +t+1 = 0. From this we

a

see that the Picard-Vessiot extension Q(t)(y1,%:) lies in the degree 48 ex-

tension K := Q(¢t)(a,vVa? —a+1, /%, </‘/§(“71)+3‘/“La+1) of Q(t), where

a®+t+1 = 0. In order to determine G precisely, we will make use of the local
exponents of Sty,. Let E, denote the set of local exponents at the point p.
Then we have Ey = {0,5}, B = {7, 5} and E = {0,3}. Now Proposi-

4712
tion 5.1 in [PUOO], provides us with an element ¢g_; € G, which is conjugated
to e2miD 1 -1

, where D is the diagonal matrix with 7, 75 on the diagonal. So the

eigenvalues of g_; are {e%,e76 }, and therefore Det(g_;) = e5. We have
g®, = —i-Id. So the kernel of the natural map G — GP has at least order
4, and we find that G has at least order 48. We already found that G had
maximally order 48, so GG is a central extension of A, by Cy of order 48, and
K is a Picard-Vessiot extension for Stu,. O

We will now give the pullback function for a second order differential operator
L € k(z)[0;] with projective Galois group A4. After applying a shift, we can
suppose (as in the case of St AELQ) that Sym(L,4) has a right-hand factor
0;. This shift does not change the pullback function. This shift can be
found in the following way. By representation theory it follows that the
operator Sym(L,4) has two degree one right-hand factors, say (0, + b;) and
(Oz +b2). The b; are rational solutions of the Riccati equation corresponding
to Sym(L, 4), and therefore the b; can be computed. The group Gal(k/k)
acts on {by, by}, so we find that by, by € k'(z) for some minimal field k' C k
of degree < 2 over k. In fact this field &’ is the field defined the beginning of
this chapter. To see this, let u = % be an algebraic solution of the Riccati

equation Ry, of degree 4 over k(z). Then the sum b of the conjugates of u
under the differential Galois group of L is a rational solution of the Riccati
equation corresponding to Sym(L,4), and we see that b € k'(x) if and only
if the minimal polynomial of u is defined over &'(x).

Theorem 1.27 Let L = 9% + a0, + ao, with ag,a1 € k(z), be a differ-
ential operator with projective Galois group Ay such that Sym(L,4) has a
right-hand factor 0,. Then L is the pullback of Sta,, with pullback function

o(t) == Z—Z(% + 2a1)%, s = 5. The only other (weak) pullback is obtained by
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composition with the unique non-trivial automorphism of Sta,.

Proof. We will first show, that for the suitable choice of ¢(¢) no shift
is needed. By Klein’s theorem, there exists ¢ : k(¢)[0,] — k(x)[0,], with
L = (¢(t)")?¢(Sta,). The Sym(Sta,,4) has a right-hand factor d;, and be-
cause ¢(Sym(Sta,,4)) = Sym(p(Sta,),4), the Sym(L,4) has a right-hand
factor ¢(0;). The Sym(L,4) has two right- hand factors of degree one, 0, and
0, — u for some u € k(z), so ¢(0;) € {¢(1t 2 u)}. If ¢(8y) = 5

we are done, otherwise consider the automorp‘hlsm Y:=¢-¢+ 1 of é'tA,1

101206 +1)
Then ¢ o 7 is the other possible pullback, with a different image for 9, so
this image must be 8 Therefore we may suppose that ¢ has no shift.

We will now calculate (;S(t)

The formula for ¢(¢) can be obtained using the following trick. Write St 4,

as 0; + s10, + So, SO sy = (t+1)2 and s, = ef(ttfi)- In the following we
will use @¢(f)" = ¢(t)'¢(f"), where f € k(t), and ' denotes or %. Ap-

4
dx

: _ s _ s 1 s (1)
plying ¢ to t = (557)%, we get 6(1) = 55 (5am)* = G@ ey (san)

(6(t))?d(s0), so &(t) = %(qﬁ?;)f We are done if we

can prove (ﬂf;) = 3“6 + 6a:. Using a1 = ¢(t)'¢(s1) — ¢((tt)),, we can write

30+6a1as3(2¢‘(2),+¢‘5°’))+6(¢(t)'¢(s1> Sr) = 300 6(2)+66(t) B(s1) =

o) d(—3(; + t+_1) + t?f:[f)) = (j)(?t(j—)’l)’ which finishes the proof. O

Furthermore q

Remark 1.28 This pullback formula was found using semi-invariants. The
representation of A in the PGL(Ea:l + Em2) induces an action of A4 on
E[z1, z]. A polynomial P in this ring is a semi-invariant if Vo € A, 3¢, € k'
such that o(P) = ¢, P. There are two semi-invariants Hy(x1,x2), Ha(z1, Z2)
of degree 4, such that for a basis of solutions {y;,ys} of Sts, we have

% =t + 1. Let {v1,v2} be a basis of solutions of L. Then we find

% = ¢(t +1). The expressions Hi(vy,vs), Ho(v1,v9) are so-called ex-
ponential solutions of Sym(L,4), i.e. M € k(z). These exponential

? H;(vi,v2
solutions can be found (up to constants). (VVe can also give a formula for one
of these exponential solutions in terms of the other and the coefficients of L.
So if we suppose H;(v1,v2) = 1, we find a formula for the pullback function
in terms of the coefficients of L. °
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Corollary 1.29 Let L = 02 + a,0, + ao be a differential operator, with
projective Galois group As. There are two differential operators L;,i = 1,2
obtained from L by a shift Oy — 0y +b;, such that Sym(L;,4) has a right-hand
factor 0,. Let F; be the pullback function of L; as in Theorem 1.27. Then

FQ = Fjlill and b2 = b1

(F1+1)

Proof. We recall that the unique non-trivial automorphism of St 4, is

¢t:_1,12(t+1) We have F12¢F1(St144) =L = d)t b1—b2(L2) = F22¢F2,b1—b2(StA4)'

Because by # by we must have ¢g, p, —p, = ¢, © ¢t+t1’12(t+1) so Iy, = F_lill and
FI

bz = bl - 712(F11+1)' O

1.2.2 Projective Galois group S; or A;

These two cases can be treated in almost the same way as the A4-case. We
will only give the differences. The new standard equations we will use are:

8t + 3 s
Oy +
6t(t+1) © t(t+1)?
with s = 576 for G» = 5S4, and s = 3600 for G» = As. In both cases there
are no automorphisms (i.e no automorphisms of Q(¢)[0;] mapping Stg» to a
multiple of itself). Using representation theory we find that S; and As have
a unique semi-invariant of degree m = 6, 12, respectively. The new standard

equations are chosen in such a way that Sym(Stg», m) has a right-hand factor
0.

StGp = 82

Proposition 1.30 The Galois group of Stge, GP € {S4, As} is a central
extension of GP by the cyclic group Cs.

Proof. We start by calculating G, the Galois group of Stg,. The local ex-
ponents of Stg, are given by Ey = {0,3}, E_y = {&, —5;} and E = {0,3}.
As in the A4 case, we conclude that there is an element g _; € GG; of order
24 with eigenvalues {e 12™, e12™}, so with Det(g_;) = e3™. We have that
gt = e~57 . Id is an element in the kernel of the map G, — Gt = S,. We
find that this kernel has at least order 6, so (G; has order > 144. Reasoning
as in the A4-case we find that GG; has order 144, and it is a central extension
of Sy by C.
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We will now calculate the Galois group Gy of Sts,. The local exponents
of Sta, are given by Ey = {0,3}, E.1 = {g,—5} and Ex = {0,3}. So
there is an element h_, € Go of order 60, with eigenvalues e~ 37, e30™.
We have Det(h_;) = e™s, so h®, is an element in the kernel of the map
Go — GY = As. Again reasoning as in the A;-case we get that G5 has order

360, and it is a central extension of A5 by Cg. O

Let a differential operator L with projective Galois group GP € {Sy, As}
be given. Then after applying a shift we can assume that Sym(L,m) has
a right-hand factor 0., where m = 6 if G» = S, and m = 12 if GP = As.
The shift we have to apply is 0, — 0, + %, with b a rational solution of the
Riccati equation corresponding to Sym(L,m). From the uniqueness of b it
also follows that the field k£’ as defined in the beginning of this chapter is
equal to k& (compare the A-case).

It is now clear that we get the following generalization of Theorem 1.27.

Theorem 1.31 Let L = 02 + a,0, + ay, with ag, a1 € k(z), be a differential
operator, with projective Galois group GP € {Ay4, Sy, As}. Set m =4,s = ﬁ
if GP = Ay, set m = 6,58 = 5576 if GP = Sy, and set m = 12,5 = % if
GP = As. If Sym(L,m) has a right-hand factor 0y, then L is the pullback of

Star, with pullback function ¢(t) = Z—Z(% + 2ay)?.

1.2.3 Projective Galois group D,, n > 2

Let L € k(z)[0,] be a second order differential operator with G? = D,,. Then
for n > 3, we have that Sym(L,2) has precisely one right-hand factor of
degree one over k(z), say 0, + a. The shift 0, — 0, — 5 transforms L into
a differential operator L, such that Sym(L,2) has a right-hand factor 0,. In
the case G? = D, = 7./2 x 7./2, the operator Sym(L, 2) has three degree one
right-hand factors. So there are three possible shifts transforming L into a
differential operator L such that Sym(L,2) has a right-hand factor 9,. We
note that from the above we can conclude that the field &' defined in the
beginning of this chapter satisfies k' = k for G» = D,,n > 2 and [k’ : k] < 3
for GP = D, (see the Ay-case for details).
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A calculation shows that if L = 02 + a,0, + ao satisfies Sym(L,2) = x - 0,,
then % = —2a; and a basis of solutions is given by {y, i}, y = el V=a0dr Wy
will now calculate the possibilities for the differential Galois group G' of an
operator L with these properties, and moreover with G? = D,,,n > 2. We
have that the extension k(t) C K? = k(t)(y?) is Galois with Galois group
D,. So k(t)(y?) is a differential field, and consequently K = k(t)(y) is a
differential field, too. Therefore it is a Picard-Vessiot extension for L. The
extension k(t)(y?) C k(t)(y) has degree one or two.

A small calculation shows that on the basis {y,i}, the differential Ga-

lois group G lies in ( 8 a91 ) U ( b91 8 ) The image of G in PGLy

must be G? = D, = 01 , Con 91 , where (5, is a 2n-th
L0 0 G
root of unity. We have |G|/|G?| < 2 and we find that |G| = |GP| can

only occur when n is odd. Then GP%G:<<(1] é),(%’ COI>>or

G = << _01 _01 ) , ( %’ C(fl )>, where we can take (, = —(o,. In case
\G|—2|Gp\wehaveD2n_G—<(1 0),( 0 <2_7L1>>.

We will use the following new standard equations:

t 1
Stp, =0 + ——0) — ————.
D SOt % T )

For n > 2 we have one non-trivial automorphism of Stp, , namely 1 = ¢_;.
The group of automorphisms of Stp, is isomorphic to S3, and has generators
W, 1)1, with ¥ as above, and ¥, = ¢z 1 - The operator Sym(Stp, ,2) has

t—17 4(t—1

a right-hand factor 0;. The differential Galois group of Stp, is Ds,, which
follows from the fact that {y, i}, y=(t+V1%2— l)ﬁ is a basis of solutions.
Indeed, y satisfies the irreducible polynomial 74" — 2¢T?" + 1.

Lemma 1.32 Sym(Stp,,2n) has a basis of rational solutions {1,t}. Fur-
thermore t is up to constants the unique rational solution of the right-hand

factor 8 + 550, — ﬁ of Sym(Stp,,2n).
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Proof. Write Stp, = 0? + 5,0, + so. We have that Stp, has a basis of
solutions {y,%} A direct calculation (or an examination of the explicit
form of the solutions presented above) shows that for any non-zero integer
k, the operator 0? + s,0; + k%so has as basis of solutions {y*, y*}. There-
fore 02 + 5,0; + k?sy is a right-hand factor of Sym(Stp,, k). In particular
3} + 750, — ﬁ is a right-hand factor of Sym(Stp,,2n). Now observe
that ¢ is a solution of 97 + ﬁ@t — ﬁ We note that 1 = y™ -y " is
also a solution of Sym(Stp,,2n). It is easily seen that the space of rational
solutions of Sym(Stp,,2n) is 2-dimensional. Indeed the differential Galois
group Dy, of Stp_ is generated by o, 7 with o(y) = (o,y, with (5, a primitive
2n-th root of unity, and 7(y) = y~'. A basis of solutions of Sym(Stp,,2n)
is {y?", y*"=2 --- Jy~?" and it immediately follows that {1,y*" + y~2"} is a
basis of the rational solutions of Sym(Stp,, 2n). O

Theorem 1.33 Let L = 0%+ a,0,+ag be a differential operator, with projec-
tie differential Galois group Dy, n > 3, such that Sym(L,2) has a right-hand
factor 9,. The right-hand factor 8% + a0, + 4n2ay of Sym(L,2n) has, up
to constants, a unique rational solution, say a. Write b := %', then b is in-
dependent of the choice of a. Now L is the pullback of Stp,, with pullback
function ¢(t) := (1 + —%—)"2. The only other pullback function is —(t).

4n2ag

Proof. The proof is somewhat similar to the proof of Theorem 1.27. The
fact that no shift is needed follows from the fact that Sym(L, 2) has a unique
degree one right-hand factor. An argument as in the proof of Lemma 1.32
shows the existence and unicity of the rational solution a. As before, write

Stp, = 0? + s10; + so. From the expression sy = ngl) it follows that
t = (1+ m)’%. The pullback map transforms this expression into
o(t) = (1 + %)_%, since ag = @(t)?¢(sp). By the previous lemma,

t is a rational solution of 07 + s10; + 4n?sy. Therefore ¢(¢) is a rational

solution of ¢(8? + 510; + 4n?sy) = (¢(1t),)2(8§ + 010, + 4n%ay). Consequently

b= %, and it follows that ¢(t) = (1 + %)_%. We see that a different

choice for the square root changes ¢(t) into —¢(t). It also follows from Klein’s
Theorem (1.9) that —¢(t) is the only other possible pullback function. O

Remark 1.34 In the above proof, we see that #(t) = c- a for some constant
c € k, and a as in Theorem 1.33. °
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For the D, case, we get the following variant of Theorem 1.33.

Theorem 1.35 Let L = 0% + a10; + ag be a differential operator, with pro-
jective differential Galois group Do, such that Sym(L,2) has a right-hand

factor 0y. Then Sym(L,2) has three right-hand factors of degree one, say

Oz, 0 + b1,0p + ba. Write b := f”i’;}z Now L 1is the pullback of Stp,, with

pullback function ¢(t) = (1 + 4n2 )"2. The other (weak) pullbacks are ob-
tained by composition with automorphisms of Stp,.

Proof. By the argument in the proof of Theorem 1.33, we only have to

show that b = z((%l. We have that Sym(Stp,,2) has three right-hand fac-

tors of degree one 0, 0; + 2t+1,(9t + ;tll So the three degree one right-

hand factors of L are 0,0, + +1,3 + é ¢(€t()t ) Therefore we can write
_ 1 _9(t) _ 1 ¢ (1)

by = 2 (t)+1’b2 2 p(t)—1 o) " =

Algorithm 1.36 (Determining n)

In the above, we assumed that the projective differential Galois group was
known. For a second order differential operator L € k(x)[0;] it is not hard to
determine whether or not the projective differential Galois group is a group
D,,n € N>y Uoc. For completeness, we give an algorithm to determine 7 in
case k is a number field, and L is a second order differential operator with
dihedral differential Galois group. We note that this is a known algorithm
(see [BD79] Section 6).

As above we may assume that Sym(L,2) has a right-hand factor 9,. So
L has a solution y = e/ vV=%%  Let K = k(z)(y,y') be a Picard-Vessiot
extension for L. Consider the tower of fields k(z ) C k(r,/—ay) C K,
where /—ay = % Since we assume the projective Galois group to be
dihedral, it follows that ao is not a square in k(z). The field extension
k(x,v/—ag) C K = k(z)(y) is infinite in case n = oo, and otherwise cyclic of
order n or 2n. Consider the differential w := 2y/—aodx on the hyperelliptic
curve H with function field k(H) := k(x, /—ao). We want to find the degree
over k(x,~/—ao) of the solution y? of the equation w = ‘2%2.

Suppose y is algebraic over k(z ) Then by the action of the differential
Galois group we find that y** € k(H). Let D := Div(y?") be the divisor of



38 CHAPTER 1. PULLBACKS OF DIFFERENTIAL EQUATIONS

y?". If D =Y a;[p;], then the residue of nw = ‘i%in in p; is a;. We also find
that w has only poles of order 1 and no zeroes. So a necessary condition for
y to be algebraic is ordy(w) € {—1,0},resp(w) € QV h € H. In the following
we will assume w to satisfy these easily verifiable conditions.

Let m; be the least common multiple of the denominators of all nonzero
residues of w. Then Dy := > res,(miw)[h] is a divisor on H, and we want
to find the smallest integer my such that myD; is a principal divisor. If
such an integer mo exists, then n = m;msy and otherwise n = oo. Indeed if
myD; = Div(f), f € k(H), then % = mymyw and we can take y*> = fm.
Because mymow is defined over k, one finds using Hilbert theorem 90 that

we may suppose f to be defined over k (compare the argument in the proof
of Lemma 1.5).

We want to find the order my of the element D; € Jac(H)(k). We will
use the following known result.

Lemma 1.37 Let k be a number field, and A/k an abelian variety. Let p be
a prime ideal in the ring of integers Oy of k, extending the prime number p.
Suppose:

1. A has good reduction at p,

2. the ramification index e, is smaller than p — 1.

Then reduction modulo p yields an injective homomorphism

A(k)tors = A mod p(Ok/p).

Proof. Let a € A(k)iors be a point of prime order £. The subgroup (a) C A
defines a constant group scheme of order ¢ over k. Since e, < p — 1, by
Theorem 4.5.1 in [T97] this group scheme extends uniquely to the finite flat
group scheme Z/EZO , where O, denotes the completion of O at p. This

p

shows that a reduces modulo p to a point of again order £. So the kernel of
the reduction map A(k)iors — A mod p(Ok/p) contains no points of prime
order, and therefore the map is injective. O

Now let p be a prime ideal in the ring of integers of k£, such that H has
good reduction modulo p and e, < p — 1. Then we can apply the above
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lemma to the abelian variety Jac(H), and the prime ideal p. It follows that
if ord(D;) < oo then this order equals the order of D; in Jac(H) mod p.
We can calculate this order i, using the algorithm in [GH00] 3.2. Write
n = maomy. If 82+ a10; +4n%ay has a rational solution then n = 7, otherwise
n = oo.

Note that it is not strictly necessary to calculate the order of Dy in a re-
duction of H. The Hasse-Weil bound gives an upper bound for this order.
This produces a number N which is an upper bound for n in case n is finite.
Now n is the smallest integer such that 02 + a;0, + 4n2ay has a rational
solution. If there is no such solution for n < N, then n = oo. °
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1.3 A generalization of Klein’s theorem

In this section we will give a variant of Klein’s theorem for third order opera-
tors. We will define a notion of standard operator, such that each differential
operator L with finite irreducible differential Galois group G C SLj3 is a weak
pullback of a standard operator for G. We start by giving an alternative
construction of standard operators of order 2, more in line with our con-
struction of order 3 standard operators, which we will give subsequently. In
this section we will work over an algebraically closed field of characteristic
zero, denoted by C.

1.3.1 Standard operators of order 2 revisited

Let V be a 2-dimensional vector space over C, and let G C SL(V) be an
irreducible finite group.

Notation 1.38

e 7(G) denotes the center of G. We have G = G/Z(G) (with GP the
image of G in PGL(V)).

e P(V) :=Proj C[V], where C[V] is the symmetric algebra of V.

o K?:=C(P(V)), the function field of P(V'). Note that K? = C[V]((),
i.e. KP consists of quotients of homogeneous elements of C[V] of the
same degree.

There is an action of G? on KP, and by Liiroth’s theorem we can write (K?)¢"
as C(t), where t is unique up to a Mdbius-transformation. We will construct
a Galois extension K? C K, such that Gal(K/C(t)) 2 G, and a G-invariant
C-vector space W C K that is G-isomorphic to V. The corresponding monic
differential operator with solution space W will be called a standard operator
for G.

Construction 1.39 (Second order standard operators)

For 0 # ¢ € V, we can see 7 as a set of functions on P(V). This gives an

injection ¥ < K?. For 0 € G we have o(¥) = ﬁ%. The set ¥ is not
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G-invariant, for a(%) = % YV o € G would imply % € C'V o € G, but there
are no G-invariant lines in V. Roughly spoken, we want to construct some

f in an extension of K? such that f % is a G-invariant vector space.

The map ¢: G — (KP)*, 0 — % is a 1-cocyle in H'(G, (K?)*). We want
to use Hilbert theorem 90 to construct a G-invariant space, but the problem
is that G is not the Galois group of K?/C(t), which is GP. We can avoid this
problem by considering the map d : G — (KP)*,7 + c¢(0)?, where 0 € G
is some lift of 7 € GP. The value ¢(o)? is independent of the chosen lift. So
d is an element of H(G?, (KP?)*), and therefore Hilbert theorem 90 implies
that there exists an f € (KP?)*, with d(7) = % V 7 € G?. In other words,

% = %5)2 YV o € G, where 0 € GP denotes the image of 0. This f is unique

up to multiplication by an element in C(¢)*. We define K := KP?(f,), by
12 = f. We have f, ¢ K?, for otherwise V= fg% would have a GP-action,
which is impossible because G — GP has no section. The field extension
C(t) C K is a Galois extension. This follows from the fact that for 7 € G?
with lift o € G, we have 7(f) = c¢(0)?f, so the square roots of the conjugates
of f are present. Note that the choice of / € V is irrelevant, because for an

other choice ¢, we can take f; = fg%, which leaves V unchanged.

Lemma 1.40 Using the above notations, there is a natural isomorphism
Gal(K/C(t)) 2 G, and V := fo% is G-invariant and G-isomorphic to V.

Proof. We will extend the GP-action on K? to a G-action on K. Write
K = KP4+ K? f,. We define a G-action on K by o(a+3fs) = 6(04)4—6(5)#]”2.
Using % = %;2 it is clear that GG acts by automorphisms. A counting ar-

gument shows G = Gal(K/C(t)), and clearly V is G-isomorphic to V. O

To V corresponds a differential operator L=0+ad +beCt) [0;] with
solution space V. We will now show that the normalization L of L corre-
sponds to a different choice for f. Let {y;,y2} be a basis of solutions of L.

Then q := det ( Zy/} z? ) lies in C(t) because the differential Galois group
1 Y2

is unimodular. We have ¢’ = —ag. We can normalize L by making the shift
0 — 0 — %a which changes the solution space V into qz_lf/, with ¢ = q.
This corresponds to replacing the f above by ¢! f. This is allowed, because
f was defined up to multiplication by elements of C'(¢). We have that K?
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is a purely transcendental extension of C. The Galois extension C(t) C K,
with Galois group GP is ramified in three points, which we can suppose to
be {0,1,00} by making an appropriate choice for . For any such ¢ we call
the constructed operator L a standard operator for G. °

With the appropriate choice for ¢, the constructed differential operator L is
equal to the differential operator Sts defined in Section 1.1. This follows
from Theorem 1.46, which we prove for third order operators, but which is
also valid for second order operators.

1.3.2 Standard operators of order 3

Now let V be a 3-dimensional vector space over C, and again let G C SL(V)
be an irreducible finite group. We will now give a construction of third order
standard operators, with projective differential Galois group isomorphic to
GP. This construction is to some extend a copy of the construction in the
previous section.

Definition 1.41 Let Z C P(V) be a GP-invariant irreducible curve, such
that Z/GP = P,. Note that by Remark 1.45 such a curve always exists. We
write C'(t) := C(Z/GP). We define a standard operator corresponding to Z
and GP, to be a differential operator L; € C(t)[d;] given by the construction
below. .

Construction 1.42 (Standard operator corresponding to Z7)
For the construction of standard operators, we must consider two different
cases for GP. Let m : SL(V) — PGL(V') be the canonical map. We have that
the center of GG is trivial, or a cyclic group of order three. We will write Cs
for a cyclic group of order three. The cases we have to consider are:

1. the natural map 7~ (G?) — GP has no section, so G = 7' (GP),

2. the natural map 7—!(GP) — GP has a section, so 77 }(GP) = C3 x GP.
In this case G = 77 }(GP) or G = GP.

We will now give the construction of standard operators case by case.
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case 1.

For 0 # ¢ € V, we regard ¥ as a set of functions on P(V'), which induce func-
tions on Z. This gives a map 7 — C(Z), which is an injection, for otherwise
Z would be a line in P(V'). This is impossible because G is irreducible, and
therefore has no G-invariant planes.

As in the construction of second order standard operators, we consider the

cocycle d : G — C(Z2)*,0 — (%)3. Then d € HYG?,C(Z)*), and
therefore Hilbert theorem 90 implies that there exists an f € C(Z)*, with

d(r) = 5 ¥V 7 € GP. Now take fs, with f§ = f. We have f; ¢ C(Z), for

otherwise fg% would be GP-invariant, which is impossible because G — GP
has no section. So we consider the degree 3 extension C(Z) C C(Z)(fs). We
have that C(t) C C(Z)(fs) is a Galois extension. As in the second order
case, we have Gal(C(Z)(fs)/C(t)) = G, and V := fs% is G-invariant.

To V corresponds a unique monic differential operator L. As in the sec-
ond order case, normalizing L corresponds to making a different choice for f.
This normalization Lz of L is now uniquely determined and will be called the
standard differential operator corresponding to Z. Note that the standard
operator depends on the choice of t. By construction, the differential Galois
group of Lz is G.

case 2.
Let H be a lift of GP in SL(V') that is isomorphic to G?. Now Hilbert theo-
rem 90, applied to H'(H, C(Z)*), implies the existence of an f € C(Z)* with

ﬁ = ﬁ Vhe H SoV := f% is H-invariant. This defines an operator L

which in general is not in normal form. We call the normalization L, of L
a standard operator for Z. The projective differential Galois group of L  is
GP, but the differential Galois group can be different from G! °

From the construction above, we get the following properties for a standard
operator Lz with solution space V; and Picard-Vessiot extension K.

1. Lz is uniquely defined, up to a Mdébius-transformation of t.

2. The projective differential Galois group of Ly is isomorphic to GP, and
P(V7) is GP-isomorphic to P(V).
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3. There is a GP-equivariant isomorphism KZ(G) >~ C(2).

1.3.3 A Klein-like theorem for order 3 operators

Let G C SL3 be a finite irreducible group. Let L be a monic third order
differential operator over C(x) with Picard-Vessiot extension K, and solution
space V C K. We assume that the representation of the differential Galois
group in V' is isomorphic to G.

Remark 1.43 Let L; = 92 +ad%+- - - be a differential operator with finite
differential Galois group in GL3. Then a = —%’, q = Det(F'), where F is a
“fundamental matrix” as in 1.3.1. In particular ¢ is algebraic. Applying the
shift 0, — 0, — %a to L; produces a differential operator L with differential
Galois group in SL3. Writing V; for the solution space of L;, the solution
space of L is g5 v, g3 = q. So the solutions of L are also algebraic, and
therefore the differential Galois group of L is finite. We will prove that L
is the pullback of some standard equation, and therefore L; is a pullback of
this standard equation, too. So the restriction to the case G C SL(3) is no
real restriction. °

We will start by constructing an irreducible curve Z C P(V') corresponding
to L. This Z will be G? invariant, and satisfy Z/GP = P,,.

Construction 1.44

The map V' — K extends to a map ¢ : C[V] — K. This map is G-
equivariant. Now take some vy € V \ {0}. For f := [, .;0(vo), we can
consider the ring (C [V][%])O of homogeneous elements of degree zero in C[V];.
We can extend ¢ to a map 9 : (C[V][%])o — K. Write I := ker(¢). We
have that (C’[V][%])o = OP(V)\ Z(f)), where Z(f) is the variety given
by f = 0. Now I defines a subset Z; C P(V) \ Z(f), and we write Z for
its closure in P(V'). Note that Z is independent of the choice of vg. The
function field of Z is C(Z) = frac((C[V][%])o/I). Furthermore 9 induces a
GP-equivariant injection of C(Z) in K? := KZ(%). The fixed field C(2)%" is
a subfield of C(x) of transcendence degree 1 over C, so it can be written as
C(t), for some t € C(Z), where t is unique up to a Mdbius transformation.
We conclude that L defines a GP-invariant irreducible curve Z C P(V'), with
Z|GP = PL,. .
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Remark 1.45 We can use the above construction to show that for every
finite group G C SL(3) there exists a curve Z as in Definition 1.41. Indeed,
let G C SL(3) be a finite group. We can make a Galois extension C(z) C K
with Galois group G, by realizing G' as a quotient of the fundamental group
of P;, minus a finite number of points. As in [PU00], we can construct a
third order differential operator over C'(z), with Picard-Vessiot extension K,
such that the Galois action on the solution space equals G C SL(3). Now
the construction above gives the desired curve Z. °

We can now state an equivalent of Klein’s theorem, for third order operators.

Theorem 1.46 Let L and G be as above. These data define a GP-invariant
projective curve Z C P(V) with Z/GP 2 P,. If Ly is a corresponding stan-
dard differential operator, then L is a weak pullback of L.

Proof. From the construction of Z above, we get the following diagram:

Cz) ¢ Kr C K
U U
cit)y c C2)

We have that the GP-action on C'(Z) corresponds with the GP-action on KP.
Let Kz be the Picard-Vessiot extension of L. By the definition of a standard
operator we can write K?G) = C(Z). Let Vz; C Kz be the solution space
of Lz. In the compositum K of K and K over C(Z), we have the identity
Vy; = %V, for the appropriate f,/ as defined in the construction of L;. We
will now use Notation 1.7. If F' is the image of ¢ in C(z), then the pullback
¢r(Lz) again has solution space V. The derivation % extends uniquely to
K. Also - extends uniquely to K, and £ (a) := 4L 4(q), a € K. So we can
define b := L(L)/(L). Applying the shift 9, — 0, + b to ¢p(L,) defines
a differential operator with solution space V. So (F')%?¢rs(Lz) = L, and
therefore L is a weak pullback of L. |

1.3.4 Examples with Galois group A; or Gigs

In this subsection we will give, for the cases G = As and G = Gigs, all
possible non-singular curves Z, as in Definition 1.41. We will also give an
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example of a standard operator with projective differential Galois group As.

Consider A5 C SL(3,C), with generators

1 0 0 1 1 2 2
0 ¢ O ,% 1 C§+C5_ C5+C5_1 ,€§’=1
00 G* 1 G+¢&G G+G7

Now Aj acts on the polynomial ring C[z,y, z]. It acts on linear terms by

a x
glax +by+cz)={| b |,| vy |), and this action is extended to all of
c z

Clz,y, z]. In [Be96] we find the basic invariants:

4 i —q n
fn = %5%_1 ($n+z ($+C5\y/; CB Z) ) ROAS {276a 10}
=0

We take as constants ¢, = 3,¢6 = 1, ¢10 = 3.
There is one more basic invariant fi5 which is the determinant of the Jaco-
bian matrix of (fa, fe, fi0)- So we have Clz, y, 2]** = C[fy, fs, fi0, fis], where

f2 = z? +yz,
fo = 2(1325 + 3zy® + 152t y2z + 452%y%22 + 109323 + 3x25),

fio = 3(6262" + y'% + 90x8yz + 12602°%y?2? + 420029323 + 3150z%y* 24+
252y°2° + 2'0 + (2522°(y° + 2°) + 840z%yz + 360zy>2?) (y° + 2°)),

fis = 1802z + (G+ )y +2) 2z + (G+B)y+2))
Re+A+Gy+1+G)2)Rr+1+G)y+(1+E)2)
Re+1+G)y+1+¢)2)2r+ 1+ Gy + (1+E)2)
e+ (G+Ey+ (G +EG)2)Rr+ (G +G)y+ (G +E)2)
(224 (G + )y + (G + 3)2) (22 + (G + Gy + (G + ¢5)2)
(y—2)(y — G2) (v — G2)(y — G2)(y — G5 2).

We have the relation
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100/ 75 = 3fi — 15907 fe f5 + 25014 f7, f5 — 90 f10f3 fo + 285840 f10 ¢ f3—
8928000 f10fsf7 + 70060500 f10 f10 + 18.f5 + 148602 f3 — 17651900 £3 f6+

810582000 /2 f5 — 12634745000 f5 f5 + 65956225000 f,°.

We want to find all irreducible As-invariant plane curves Z, with Z/A5; = Pg.
Such a curve Z is given by f = 0, for some f € C|fs, fo, fi0, f15]. We get
a Galois covering Z — Z/As. The ramification points of this covering are
points in P4 which are fixed by a cyclic subgroup of As. So to calculate the
genus of Z/As and the ramification data, we need information on the points
in PZ fixed by a cyclic subgroup of As. From [We96] we get the following
table. The first column gives the type of cyclic subgroup of As. The second
column gives the number of subgroups of that type. The third column gives
the number of points in P4, which have a stabilizer of the type given by the
first column.

H ‘ # ‘pts.
CQ 15 (0.@]
Cs 10| 20
Cs| 6| 12

There are 15 lines in P%, given by fi15 = 0, and the points with stabilizer C,
are the points that lie on precisely one of these lines. Note that each line as
a whole is invariant under a group Cy x Cy C As.

From this data we get the following information. For a branch point of
the covering Z — Z/As, the ramification index e must be in {2,3,5}. Then
the stabilizer of a ramification point above this branch point is C,. Above
a branch point with ramification index 3, there lie 20 points. So there is at
most one branch point with ramification index 3. In the same way we see
that there is at most one branch point with ramification index 5.

The ramification points with ramification index 2 are intersection points of
Z with Z(f15) := {p € P&|fi5(p) = 0}. If Z = Z(f), and f has degree
d, f [/ fis, then for a fixed line | C Z(fi5), Z N1 consists of at most d points.
Such a line [ is fixed by a group D-, so a point p € Z N[ with stabilizer C
has a conjugate in Z NI different from p. All lines in Z( fi5) are images under
G of [, so all branch points with ramification index 2 are given by the images
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of ZNlin Z/As. We see that there are at most g such branch points.

Now we can use Hurwitz’s formula to calculate all possibilities for non-
singular Z. Hurwitz’s formula states 2g — 2 = 60(2gp — 2) + 60, %=
Here i runs over the branch points of the covering Z — Z/As, and e; are the
corresponding ramification indices. Further, g denotes the genus of Z, and
go denotes the genus of Z/A;. We write n; for the number of branch points
with ramification index ¢, and d for the degree of f,Z = Z(f). Then for
non-singular Z, we have g = W. So we can rewrite Hurwitz’s formula

as d? — 3d 4+ 120 = 120g, + 30ny + 40n3 + 48ns;.

If go = 0, the restrictions n3,ns < 1,ny < g give the bound d < 15. A
computation in Maple shows that the homogeneous irreducible nonsingular
f € Clfa2, fs, fro, fis] of degree < 15 are given by

{fo, N3+ fo, NS+ wfife+ fro, AN+ pufs fo + v fE + fafiol\, p e Cov € C Y.

For such a polynomial f of degree d, the values of ny,ns3,ns can be com-
puted using Hurwitz’s formula. For d € {10, 12}, there is the possibility that
go = 1, but an explicit calculation of the number of intersection points of fig
and fZ + fafio with the invariant line y = 2 rules out this possibility. We
find the following table for the possibilities for d, nq, ng, ns, for non-singular
Z.

d |ny n3g ns
211 1 1
613 0 1
105 1 0
1216 0 1

From this table, we can see that the 12 points with stabilizer Cj lie on
Z(f2) and on Z(fg). Therefore by Bezout’s theorem, they are the points
Z(f2) N Z(fs). So we have a complete list of all non-singular curves Z satis-
fying definition 1.41, and we see that there are infinitely many such curves Z.

Unfortunately we are not able to give a complete list of all singular curves
Z, with Z/As = PL. We can give the list up to a certain degree. By
the previous, we see that the singular curves of degree 10 are given by
I3+ A0, A € C*, and the genus is 36. For degree 12 we find the family
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e+ N2 fe+ ufé, ) € C pu € C of genus 19. For degree 16, all irreducible
curves in our family are non-singular, so here g, > 1.

Example 1.47 We can calculate a standard operator for the curve Z given
by 22 + yz = 0. Since the group As is simple, we are in case 2. of Con-
struction 1.42. Writing u := £,v := £, we have that C(Z) is the quotient
field 0£ Clu,v]/(u? + v). So C(Z) = C(u). There is a G-invariant element

" u’(u® 1lu®—1)° 5 in C(Z). We see that u has degree 60

= = ([ y22suls 1404uT0— 22805 11

over C(t), so indeed C(t) = C(Z)“. For the vector space © = C(u, —u?,1)
in C(Z) (taking ¢ = z in the construction), we want to find an element
f # 0 such that f¥ is G-invariant. Consider ¢ : G — C(Z)*,0 — G
By [S62], p158, Proposition 2, there exists an element a € C(Z), such that

f=ycqclo)-o(a) #0. Then f¥ is G-invariant. We can take a := T

and consequently f =3 . m

The vector space f % is the solution space of an operator who’s normalization
is the desired standard operator Lz. This determines Lz as an element of
C(u)[0¢]. We know that this operator lies in C(¢)[0;], and we can compute
the coefficients of Lz as rational functions in ¢. After an appropriate shift

and Mobius-transformation we find
8003 — 989t + 864 9 _ 1600t® — 2967t% + 4445t — 1728
900e2(t — 1)2 180043 (t — 1)3

This turns out to be the second symmetric power of St s.e). <&
5

LZ:8?+

Remark 1.48 Let W be a 2-dimensional vector space over C. There is a
faithful representation p : A3* — GL(W). This induces a representation
of A5 in Sym(W, 2), which is isomorphic to the representation A5 — SL(V)
defined above. We can take p to be the representation of A5 x C5 induced
by the differential operator St At Now by Proposition 5.12 of [P99] (the
Tannakian approach to differential Galois theory) we have an isomorphism
of differential modules Sym (C(t) [at]/StA§L2 C(t)[0],2) = C(t)[0¢]/LC(t)[0],
with L, as defined in the example above. This does not imply that L is the
second symmetric power of a second order differential operator. Nevertheless
this is the case. °

We note that applying a shift 0; — 0; — %fT, to the operator Lz in general
gives a differential operator with differential Galois group As x Cj.
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The group Gigs

We take Gigs C SL(3,C), with generators:

o0 4 (G g ey
0 ¢ 0 ), —=| ¢—-¢C ¢-¢ ¢—¢
0 0 C4 \/—7 C3_€4 §5_€2 CG_C
Here ( is a primitive 7-th root of unity.
In [Be96] we find that the ring of invariants for Gies is C|fa, fs, f1a, fo1]-

fo = 2(zy® +y2® + z2?),

fo = zigDet(Hes(f4)),

%f1  0%fa  9*fa Bfe
ox2 dzdy Oxdz Oz
8% f4 9?2 ];4 8%f4 dfe
_ 1 Oyozx ) oyoz Ay
fua = gDet | % I 1 O afs |-
020 020y 022 0z

ofs 0fe 0k
ox oy oz

fa = g5Det(Jac(fu, fo, fia))-

For completeness, we give fg, fi14 explicitly.
fo = 2(52%x%y? — 25z — y°z — 2y),

fia = M+ 4y 418y 2" + 18y 2" + 182727 — 1262325y — 2509 2% 2z —
34y2 2w — 34222y + 37524 28y? — 25024 xy® + 3752822yt — 342yt —
1262°23y® — 250222y + 3752228 — 12628253.
fo1 factors as a product of linear terms over Q((;), where (; is a primi-
tive 7-th root of unity. In fact f5; has as linear factors:

T—y(1+ ¢ +¢8) + 2(¢ + ¢) and its 5 conjugates,

T —y(Cr+ G+ )+ 2(¢r + ¢2) and its 5 conjugates,

T—y(G+ G+ ) — 2(¢F + ¢8) and its 5 conjugates, and
(

r—y(1+ G+ )+ 2(¢ + () and its 2 conjugates.

There is one relation between the f;:
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[ = Aff = 8fufi{ —AASLfi fo — 8Fif6 + 68 frafi f§ + 1727 f§ + 126 frafafs—
938f3fe + b4 f!

According to [We96], we have the following table of points in PZ, fixed by
some subgroup of Gieg (for details, see the As-case):

H | # | pts.
02 21 | o0
C; |28 56
Cy |21 42
Cr| 8| 24

There are 21 lines with stabilizer C';. To be precise, each point which is on
precisely one line is fixed by a group Cs, and each line as a whole is invariant
under a group Cy X Cs.

For Z a Ggs-invariant curve of degree d, the covering Z — Z/G1es can
have ramification indices in {2, 3,4, 7}. For a non-singular curve Z such that
the quotient has genus 0, the Hurwitz formula writes:

d? — 3d + 336 = 84n, + 11203 + 1260, + 144n,.

By calculating the number of ramification points, we find ns, ny, n7 € {0,1},
and ny < %. This gives the following possibilities for d, ng, n3, ng, ny:

d No N3 N4 Ny
411 1 0 1
6|1 0 1 1
1413 1 1 0
1814 0 1 1
2005 1 0 1

There are infinitely many G1gg-invariant non-singular irreducible curves Z in
P2, with Z/G1gs = Pg. In fact all such curves are of the form Z(f), with

Fe{fs, fo, e, N + frafa, A\f2 + fiafo| A € T}
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Chapter 2

Moduli Spaces

Thie contents of this chapter has been published in the book “Differential
Equations and the Stokes Phenomenon”, [ST02].

2.1 Introduction

In §2 of this chapter we will define moduli spaces of linear differential equa-
tions, associated to given local data. These linear differential equations are
defined on P'(C), the projective line over an algebraically closed field C' of
characteristic 0. The data prescribe the position of the singular points and
their formal equivalence type. In §3 we will prove that the constructed mod-
uli spaces are affine varieties, i.e. are of the form Spec(U), with U a finitely
generated C-algebra.

Every closed point m of the moduli space represents a differential equation,
and we will associate a differential Galois group Gal(m) to m. In §4 we will
prove that for any fixed linear algebraic group G, the condition Gal(m) C G
defines a Zariski closed set in the moduli space. In Chapter 3 we will prove
that the condition Gal(m) = G defines a Zariski constructible subset of the
moduli space if G satisfies a certain condition.

93
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2.2 Definition of the moduli space

The definition of the moduli space that we will give here, is a slight variation
on the one given in Chapter 12 of [PS03]. This section contains results from
[PS03]. For completeness, and since many of these results will be slightly
altered or generalized, we present them here completely.

The definition of the moduli space uses the concept of a connection on a
vector bundle on an irreducible, non-singular, projective curve X over an al-
gebraically closed field C' of characteristic zero. One writes {2x for the sheaf
of holomorphic differentials. For an effective divisor S, one writes Qx(S)
for the sheaf of meromorphic differentials with poles prescribed by S. A
connection V on a vector bundle M on X with poles prescribed by the di-
visor S is a morphism of abelian sheaves V : M — Qx(5) ® M satistying
V(fm) =df ®m+ fV(m) for each open U C X, f € Ox(U),m € M(U). In
the sequel we will consider X = P{,. Now we will explain what the local data
are and define the functor F, associated to these local data. This functor
will be shown to be representable and thus induces a (fine) moduli space.

Definition 2.1 The data on P := IF’lc that we consider are:

e a vector space V over C' of dimension m;
e distinct points s1,...,s, € P;

e foreach i =1,...,r aformal connection V; on N; := C[[t;]] ® V having
the form V,; : N; — C’[[ti]]ti_k"dti ® N;, where k; > 0. Here t; is “the”
local parameter at s; i.e. t; =2z — s; for s; # oo and t; = % for s; = o00.

In the sequel we suppose that > k; > 2, since Y k; < 1 turns out to be
uninteresting.

One associates to such data a covariant functor F, sometimes called the
moduli functor, from the category of C-algebras to the category of sets. One
could also see this as a contravariant functor on affine schemes over C' and
extend this to a functor defined on all C-schemes. We will show that F is
representable by a certain C-algebra U, so this point of view does not yield
new information. However, we call Spec(U) the moduli space of the moduli
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functor F and denote this affine scheme by M.

First we define F(C). For any C-algebra R a similar definition of F(R)
will be stated later on.

F(C) consists of the equivalence classes of the tuples (M, V, {¢;}), where:

(a) M is a free vector bundle of rank m on P, with a connection

VM= Q0 kifsi]) @ M,

(b) ¢; : M\si — N; are isomorphisms, such that ¢; o %z =V, o0 ¢;.

The above notation needs some explanation. M\si denotes the completion of
the stalk M,,. Thus M\S is equal to C[[t;]] ®cy,] (¢, M, where M, is a free

Clti)t,)- module of rank m. For each p01nt s; the connection V induces a con-
nection V; : M — t; 5 C[[t; ]]dt ® MSZ We also write ¢; for the extension
of &; to a map t; k’C[[t J]dt; @ M — C[[t:]]t; *dt; ® N;. Now condition (b)
reads: V; = ¢;oV;o¢; ' : N; — C’[[ ti]]t; *dt; ® N;. We say that (M, V, {¢;})
is equ1valent to (M', V', {¢}}) if there exists an isomorphism f : M — M’
of the free vector bundles, which is compatible with the V’s and the ¢’s.

For any C-algebra R, the elements of F(R) are the equivalence classes of
tuples (M, V, {¢;}), consisting of:

(a’) a free vector bundle M of rank m on P} with a connection

VM= Q0O kifsi]) @ M,

(b’) isomorphisms ¢; : /T/i\sl. — R[[z]] ® N, such that ¢; o V; = V;0¢;. e

Remark 2.2 A more explicit definition of F(C) (which extends to F(R))
can be given as follows. Let W denote the vector space H°(P, M). Then
V is determined by its restriction to W. This restriction is a linear map
L: W — HY(P,Q> ki[s;])) ® W. Furthermore we have that the maps
b; : ./(/l\si =C[[t:]] ®W — N; = C[[t;]] ® V are determined by its restrictions
to W. The latter is given by a sequence of linear maps ¢;(n) : W — V, for
n > 0, such that ¢;(w) =Y, -, ¢i(n)(w)t? holds for w € W. The conditions
in part (b) are equivalent to ¢;(0) is an isomorphism for all i, and certain
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relations between the linear map L and the sequence of linear maps {¢;(n)}.
These relations can be made explicit if the V; are given explicitly. In other
words, (a) and (b) are equivalent to giving a vector space W of dimension m
and a set of linear maps L, {¢;(n)} having certain relations.

An object equivalent to the given (M, V,{#;}) is, in terms of vector spaces
and linear maps, given by a vector space W' and an isomorphism W' — W
compatible with the other data. If we use the map ¢,(0) to identify W and
V', then we have taken a representative in each equivalence class and the
elements of F(C') can be described by tuples (V,{¢;}), where:

(@) V: M — QO ki[s;]) ® M is a connection on the free vector bundle
M = OPIC &® V,

(b’) the ¢; are isomorphisms /(/l\si — N such that ¢; o%i = V,0¢; and such
that ¢1(0) is the identity from V to itself. o

One observes that applying an automorphism of P changes the position of
the singular points si,...,s,, but leaves the moduli functor essentially un-
changed. Therefore we may, for notational convenience, suppose that oo is
not a singular point. The moduli functor can be made even more explicit
by considering V @ instead of V. Before giving this variant of F we need to
introduce some notation.

Notation 2.3

e For ¢ € M,,(C((2))), we define ord(¢)) to be the minimum of the orders
of the coefficients of 1.

e For a differential operator £ + A, A € End(C((2)) ® V), or for A itself,
we define the order to be the order of a matrix representing A on a
basis of V. This definition is independent of the choice of basis.

e O(n) :=={y € End(C((z)) ® V)| ord(¢)) > n}.

We now give the explicit variant of F, which will be the form used for our
computations. The data are:

1. a vector space V over C' of dimension m,
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2. singular points s1,..., s, € C, and for each point a differential operator
diz + Bi; BZ S EDd(C((tz)) X V) of order > —kz

The set F(R) consists of the tuples (& + A, {¢;}7_,), where:

e A=YT ngl Ald) - A(i, j) € End(R®V) satisfies Y7, A(3,1) = 0

(z—s;)77
(this condition is equivalent to oo being nonsingular);

o the dy =5 7" #i(7)(t;)?, t; = z — s; are automorphisms of R[[t;]] ® V
and ¢,(0) = I = Idy;

° ¢,~(d% + A)g; !t = d% + B;, i =1,---,s, where we see A, ¢; as elements
of End(R[[t;]][t;'] ® V). This can be restated as ¢} = ¢; A — B;¢;.

Remark 2.4 One observes that A can be recovered from the endomorphisms
{6i(4),0 < j < k;, 1 < i <r}. Therefore we will sometimes omit the A. e

Theorem 2.5 The functor F is representable.

Proof. Fix a basis of V over C. One introduces a collection of variables
{X,};es, representing the entries of the matrices of A and all ¢;(n), with
respect to this basis. We have a set of relations in these variables, induced by
the equations ¢, = ¢;A— B;¢;. Let S be the ideal generated by this relations,
then it is easily seen that the C-algebra U := C[X];c;/S represents F. O

Remark 2.6 Other moduli functors.

(1) A useful variation F* on the moduli functor F considered above is the
following. Suppose that the singular points si,...,s, are distinct from oo.
The elements of F*(C) are equivalence classes of tuples (M, V,{¢;}), where
again M is a free vector bundle, but now V is a connection from M to
Qoo + > ki[si]) ® M, again satisfying condition (b) from the definition of
F(C). The definition of F*(R) for any C-algebra R is similar. This amounts
to admitting for the objects of F*(R) a regular singularity at oo for which
the formal local structure is not prescribed.

(2) In his thesis ([Bo99]) P. Boalch defines moduli spaces for the case of
“nice” regular singularities. His moduli spaces are quotients of the moduli
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spaces defined here (they are obtained by forgetting the local isomorphisms
¢;), and have even dimension and a natural symplectic structure. The mod-
uli spaces defined here need not have an even dimension.

(3) There are still other interesting variations of the moduli functor. One
can replace the condition that M is a free vector bundle of rank m by the
condition that M is a vector bundle of rank m of a given type. Another
possibility would be to allow moving singular points. It seems possible to
prove that all these moduli functors are represented by a finitely generated
C-algebra. °

2.3 The moduli space is of finite type over C

Proving that the algebra U representing the moduli functor F is finitely
generated amounts to showing that a finite part of the {¢;}!_; determines
the (universal) element (& + A, {¢;}7_,) in F(U). Before proving that U is
finitely generated, we first give an example.

Example 2.7 Consider the moduli problem, with the following data:

e singular points {s; = 0,5, = —1,83 = 1, 54 = 00},

e local connections d‘i + 13,01- ie{1,---,4}, with

({10 4 (350 (-1 1
Cl_<0 0)702_03_<0 0)704_<0 _1>'

The global differential operators are written %-l—A = d%+2f:1 %’ t; = z—s;.
An element (£ + A, {¢;};_;) belongs to F(C) if it satisfies ¢,(0) = I,
L(6) = A~ LCii, i=1,--- 4 We find A; = Cy, A; = 6;(0)~'Cigs(0),
i = 2,3. The condition at oo writes —(A; + Ay + A3) = ¢4(0) *Cys¢4(0).
It can be seen that the representing C-algebra U is generated by the en-
tries of the matrices ¢;(1), ¢;(0), i = 2,3,4 and Sagy b = 23,4 In-
deed, the equations ¢ = ¢; A — tiC ¢; determine all entries of ¢1(j), j > 2,
®i(j), j > 1, i = 2,3,4 as polynomial expressions in the entries of the
#1(1), ¢;(0), i = 2,3,4. We have one more equation, namely (As— A3)9; = 0.
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This equation comes from the degree 0 term of ¢} = ¢; A — %C’lqﬁl. From this
one also deduces that there are no relations on (¢;(1))s1, and that the other
coefficients of ¢1(1) are determined by As, A3, so by ¢2(0), ¢3(0). This com-
putations show that the moduli space corresponding to this moduli problem
is 8-dimensional.

We will now examine what the possibilities are for the global differential
operator % + A. We have A; = Cy, A, A3 ~ Cy, —(A; + Ay + A3) ~ Cy and
(A — A3)21 = 0, here ~ denotes similiarity of matrices. These conditions
translate into

Det(Ag) = Det(Ag,) = 0, Det(A1 + AQ =+ A3) = 1, TI“(AQ) = TI“(Ag) = —

TI(A1+A2+A3) :2, (AQ—A3)21 :0, A1+A2+A3 7£I

(see the proof of lemma 4.6 for details). The condition Tr(A;+As+A3) = —
is superfluous, and we see that the space of connections is a 2-dimensional
Zariski-constructible set. To be more precise, we can write the matrices

A;, i =23as ( Y b_ia, ) We have ¢ = c3, and the determinant condi-
Y i

tions give a3 — as+bocy = 0, a3 — a3+ bscy = 0, (az+as)®+2c2(ba+bs) = 0.
We find that the space of connections consists of a 2-dimensional pointed
plane ay = az3 = ¢ = 0, (bg, b3) # (0,0) and a 2-dimensional part given by
1
2

2 _
(ag—ag) —a2+a3, bQ a2 L bg_ s 02#0 &

Cc2

Definition 2.8 Let some data (V,{s1, -, s}, {d% + B;}i_,) be given. We
define a functor F, from C-algebras to sets as follows. F,(R) consists of
tuples ({A(4,))| 1 <j <k 1 <i<r}{s(U))0<j<n+k, 1<i<r}),
with k; := —ord(B;) and A(4, ), ¢;(j) € End(R ® V) satisfying:

e ¢;(0) is invertible for 1 < i <7 and ¢;(0) = I,
¢ Z::l A(l’ ]‘) = Oa
e A=371, S A(Z’J) satisfies ¢ = p;A—B;¢p; mod ] for1 <i<r. e

jl(zs

The functor F, is represented by a finitely generated C-algebra U,. There
is a canonical forgetful natural transformation F — F,,, which induces a C-
algebra homomorphism h,, : U, — U. In the same way we can define forgetful



60 CHAPTER 2. MODULI SPACES

natural transformations F,,, — F,, m > n, with associated hy, ,, : U, = Up,.

In the proof and the formulation of theorem 2.9, we will use the following
assertions.

(1) There exists an integer N € N, such that for n > N the natural maps
F(R) — Fn(R) are injective.

(2) There exists an integer ¢ € N, such that for n > N, with N as above,
the maps F(R) — F,(R) and F,1.(R) — F,(R) have the same image.

Theorem 2.9 U is finitely generated. More precisely, for N, c as above and
n > N + c one has:

(a) the homomorphism hy, : U, — U is surjective,

(b) ker(hy,) =ker(hpien : Uy = Upge).

Proof. We will show that the theorem follows from the two assertions. Take
n > N. Assertion (2) can be restated as follows. Let R be a C-algebra and
let a : U, — R be a homomorphism such that there exists a homomorphism
B : Upye = R with B o hyy.n = @ Then there exists a homomorphism
v : U — R such that v o h, = a. Moreover assertion (1) states that = is
unique.

hn+6,n hn+c

Un - Un+c — U

b

In the above diagram we can take R = Upy¢, @ = hpyep, B = id. This yields
a7y, with yo hpyc0 hpyen = hnyepn. From the fact that hpic 0 hpyen = by it
immediately follows that ker(h,) = ker(h,i.n), which proves part (b) even
for n > N.

From 7y o hy,, = byt we also get hpicoyohy = hyie 0 hpgen = by We see
that A,y 0y : U — U and idy induce the same element h,, € F,(U) under
the map F(U) — F,(U), so by assertion (1) we find h, 4. 0y = idy. This
immediately implies that h, .. : U,1. — U is surjective, which proves part
(a). O
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Proof of the assertions.

In the following we will use the standard form for a differential operator
24 + B, B € End(C((z)) ® V). We recall some facts from the classification
of formal differential equations (see [PS03] Chapter 3).

There is a finite extension C((2)) C C((t)), t® = z, e € N, such that z% +B
is equivalent over C((t)) to an operator of the form z:£ + St, where St sat-
isfies:

e there is a decomposition V = @Vj, such that St acts on V;, by
St(v;) = gv; + l;(v;), for some ¢; € t 'C[t '] and for some linear map
i Vi = Vi,

e any two distinct eigenvalues of a map [; do not differ by integer multiples
of L.
€

In this section we will use the term standard operator for a differential oper-
ator satisfying these requirements. We now come to the proofs of assertions

(1) and (2).

Proof. [Proof of assertion (1)] Let (£ + A,{¢;}) and (% + A,{¢;}) be two
elements in F(R) with the same image in F,, for some n € N. For a fixed i
we find ¢; (L +B;)gi = L+ A= ¢~>Z~_1(£+Bi)q3i. Hence ¢ := ¢;¢; " satisfies
(L +B;) = (L + B;)p. Thus ¢ € GL(R[[z]] ® V) is a solution of the
differential equation ¢’ = ¢B; — B;¢. This differential equation has a finite
dimensional solution space in End(C((z))®V’). Therefore there is an N; > 0,
such that if ¢ — I € O(n),n > N;, implies ¢ = I (here we use notation 2.3).
We conclude that N = max{0, N; — k;} has the required property. a

Remark 2.10 The numbers N; in the proof of assertion (1) can be made
explicit as follows. For B € End(C((2)) ® V), let Aut(z4 + B) denote the
group of automorphisms of the differential operator z% + B. To be explicit,
Aut(z£+B) is given by {¢ € GL(C((2))®V)| ¢¥(z £ +B)y ™' = (2 £ + B)}.
From Lemma 12.13 in [PSO03] it easily follows that for a standard operator
24 + St, the group Aut(z£ + St) is contained in GL(V). An arbitrary
differential operator z-L + B can be written in the form y(z-% + St)y™!, for
some v € GL(C((t)) ® V), t¢ = z. The automorphism group of (2% + B)
in GL(C((t)) ® V) is yAut(z:£ + St)y~L. Tt follows that the properties
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¢ € Aut(z£ + B)and ¢ — I € O(g+ 1) , with g : [MJ, imply
that ¢ is the 1dent1ty In the situation of the proof of assertion (1), one has
2+ 2B = vi(z L + St;)y; !, for some v; € GL(C((t;)) ® V), t5 = 2. Thus
one can take for N the 1nteger [£] +1, where g; = ord(y:) + ord(fyZ . e

For the proof of assertion (2), we need the following two lemmas.

Lemma 2.11 Given is a standard differential operator zd% + St and a dif-
ferential operator z£ + A, A € End(C((2)) ® V) such that A — St € O(n)
with n > 1. Then there is a unique h € GL(C[[2]]® V) of the form h = I +k
and k € O(n) such that h(z£ + St)h~' = (2L + A).

Proof. Write A = St — R with R € O(n). Then we have to produce a
k € O(n), with k' + St-k — k- St = R+ R - k. The differentiation is here
=24 instead of £. Put L(k) := k' + St -k — k- St. Suppose that one can
solve, for any T' € O(n), n > 1, the equation L(k) = T with a k£ € O(n).
Then the equation L(k) = R+ R - k has a solution k¥ € O(n). Indeed,
define a sequence of elements ki, ko, k3,... by L(k1) = R, L(ks) = R - ki,
L(ks) = R - ko, etc. Then the orders of the k, tend to co and the sum
k=", k; converges. This k satisfies L(k) = R+ R - k.

For solving L(k) = T with T' € O(n) one needs the structure of the standard
differential operator z% + St. Let V = @_,V; be the decomposition corre-
sponding to St. Every T € End(C((t)) ® V) is given as a “block matrix”
T = (T;;)1<ij<r, where T; ; € L;;, where L;; denotes the space of C((t))-
linear maps from C((t)) ® V; to C((t)) ® V;. By definition St = (St; ;) with
Sti,j =0 forz 7é _] and Sti,i = QZI+lz For k = (k'i,j) one has L(]C) = (L(k‘)z,]),
with L(k)zﬂ = kz'-,j—i-(qu—i-li)k,-,j—ki,j(qjl-l-lj) == k;yj‘i‘(Qi_Qj)ki,j-i-liki,j—ki,jlj.
Let T'= (T;;) € O(n) be given. Then we have to solve for every i, j the equa-
tion ké,j + (Qi - Qj)ki,j + liki,j — ki,jlj = T;',]', with ki,j € O(TL)

Define an operator M, on L;; by M; ;(A) = A"+ (¢; — ¢;)A + ;A — Al; for
A € L;;. For i # j, one observes that the terms of lowest order in M; ;(A)
apear in the term (g; — ¢;)A. With the obvious definition for O(m), this im-
plies that M, ;(O(m)) = O(m r), where 7 is the degree of ¢;—¢; in ¢ '. This
solves the problem for ¢ # j. For ¢ = j, one has that M;;(O(m)) = O(m),
because no non-zero difference of the eigenvalues of the constant matrix [;
is an integer multiple of % Here we used the fact that the endomorphism
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on GL,(C) given by X — AX — XB, A, B € GL,(C) is an automorphism
if A, B have no eigenvalues in common. This solves the problem for i = j.
The existence of A has now been shown. One easily sees that the steps in
the proof also imply that A is unique. O

Lemma 2.12 Fiz an operator -+ B with B € End(C((z))®V). There ezist
an integer ¢ > 1 (depending only on B), such that for any differential operator
4 1+ A with A— B € O(k), k > ¢, there is a unique h € GL(C[[2]]® V), with
h(z—+B)h1—z + A, and h— T € O(k — ¢).

Proof. There is a 'y € GL(C((t)) ® V), with t¢ = 2z, e 6 N such that
V(2 + zB)y ' =: 2 + St is a standard operator. Write z-4- + A for the
operator y(zi—i-zA) 1. If A satisfies A—B € O(k), then St— A € O(n) with
respect to t, where n = e(k+1)+ord(y )+ord( D). If k> ol ) ord(y71) _q,
we can apply Lemma 2.11 to obtaine a h € GL(C[[t]]®V) with the properties
h—1T € O(n) and h,(td + eSt)h~l = =t + eA. This can be restated as
h(zL+St)ht = 2L+ A. Now h —'y 1h7 satisfies h(z L +B)h * = z L + 4,
and furthermore h —I € O(m), m = n+ord(y) + ord( “HoA pr10r1 h
has entries in C'((¢)), but the uniqueness of h implies that the entries of

h are actually in C((z)). We have that h € O(k + 1 + M).

Concluding, we find that for c¢ to satisfy the properties of the lemma, we
1—ord(y)—ord(y~1) —1and ¢ > _2(0rd(’y)—|—ord(’y_1)

must have ¢ > 1, and since
ord(7y) + ord(y~!) < 0, we can take ¢ = max(0, — M —1). O

Proof. [Proof of assertion (2)] The local data for F are given by operators
d% + B; fori=1,...,s. Lemma 2.12 attaches an integer ¢; > 1 to each op-
erator. Take ¢ := max;{c;}. We want to show that the maps F(R) — F,(R)
and F,;.(R) — Fn(R) have the same image for n > N, with N as above.
One inclusion is obvious.

Consider a tuple { := {¢(4))|0 < j < n+k; 1 < i < r} € Fu(R).
By definition, ¢;(0) is invertible, ¢;(0) = I and the ¢; := Zn+k’_1 éi(4)t]

satisfy the equations ¢, = ¢;A — B;¢p; mod t? for all 7. We recall that
the map A is determined by a first part of the ¢;’s. Suppose that £ is
the image of {¢;(j))|0 < j < n4+c+k; 1 < i < r} € Frpe(R) un-
der the map F,..(R) — F,(R). The differential equation associated with
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;= Z;L;LSHW wi(j)tg is wi(d% + A)y; !, which we can write as d% + B; + R,
with R € O(n+c). According to Lemma 2.11 (and since ¢ > ¢;) there is an h;
with h; — I € O(n+c—c¢) = O(n) such that (s + Bi)h; " = (g + A); "
Define 7; = h; '1;. Then {r;}/_, is an element of F(R) which maps to the
given &. O

2.4 Closed subspaces of moduli spaces

In his article [S93], Michael Singer proves a result on the variation of the
differential Galois group in certain families of scalar differential equations.
In our setting this would translate into the following. For a given moduli
functor F with moduli space M and a given linear algebraic group G, the set
of the closed points m of M such that the differential Galois group Gal(m)
is equal to G is Zariski constructible if G satisfies a certain group theoretic
condition (the condition in Definition 3.1). We will prove this statement in
a more general setting in Chapter 3. In our current setting, we will prove
that the set of closed points m of M such that the differential Galois group
Gal(m) is contained in G is Zariski closed.

For convenience we consider a moduli problem and the corresponding moduli
functor F and moduli space M , for which 0 and oo are nonsingular. Write
S =) ki[s;] for the divisor corresponding to the data for F. A closed point
(or C-valued point) of M is an element m = (£ + A4, {¢;}) € F(C). We
recall that this notation for elements of F(C) is derived from the notation
(M, V,{¢;}) by an identification of H°(P, M) with the vector space V' and
d% +A=V 4.

Definition 2.13 Gal(m) as algebraic subgroup of GL(V).

Let m = (£ 4+ A,{¢;}) € M(C). A priori, the solution space, the Picard-
Vessiot ring and the differential Galois group of % + A are only given up to
isomorphism or up to conjugation. Using the regular point 0 for %—l—A we will
fix these objects. The entries of A belong to the subring C|z, m]

of C[[z]]. Therefore W := ker(:£ + A,C[[2]] ® V) is a solution space. The
canonical map C[[z]]®@ V — V, given by f®v — f(0)-v, induces a bijection
W — V. In this way we will identify V' with the solution space W of % + A.

The ring generated over C|z, m] by the coordinates of all elements
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of W is a differential subring of C[[z]]. This ring will be denoted by PVR(m).
It is easily seen that PVR(m) is a Picard-Vessiot ring for -~ + A. The group
of the differential automorphisms of PVR(m) over C|z, m] is the

differential Galois group Gal(m) of % + A. The natural C-linear action of
Gal(m) on W, which makes Gal(m) into a Zariski closed subgroup of GL(W),
is transported via the identification of W with V, to an identification of
Gal(m) as Zariski closed subgroup of GL(V). Depending on the context we
will also write Gal(A) or Gal(V) instead of Gal(m). o

Remark 2.14 In case of moving singularities, one still wants to fix a “base
point”. A good choice would be to replace the point 0 by an infinitesimal
“base sector” at the point 0.

Let G be some linear algebraic group G C GL(V). We want to prove that
{m € M(C)| Gal(m) C G} is a Zariski closed set. The first step is a
reduction to the case where G = {g € GL(V)|g(L) = L} for some line
L C V. Chevalley’s theorem states that there is a vector space V', obtained
from V' by some construction of linear algebra, and a line L' C V', such that
G ={g9 € GL(V)|¥(g9)(L") = L'}. Here ¢ : GL(V) — GL(V’) is the natural
map induced by the construction of linear algebra on V. We need to describe
this construction more explicitly.

Construction 2.15 Let I C C|GL(V)] := C[{X,,}, m] be the ideal

defining G. The group GL(V) acts on the left on C[{X;,}, m] Let
H (d) denote the vector space of the homogeneous polynomials in the variables
X ; of degree d. One can show that there exists an integer £ > 1 such that
is generated by I, := I N ®%_ H(d) and moreover that g € GL(V) leaves I
invariant if and only if g € G (see [Br69] §5). Let D be the dimension of I}
and consider the line L := A" I, in V' := A\”(&*_, H(d)). Then g € GL(V)
belongs to G if and only if ¢(g) (L') = L', with ¢ as defined above. The vector
space H(1) with its GL(V')-action can be identified with V" :=V & ---@V,
where n is the dimension of V. The vector space H(d) with its GL(V')-action
is then identified with Sym(V™,d), the d-th symmetric power of V™. Finally
V' is identified as a GL(V)-module with A" (&®%_,Sym(V™, d). .

This explicit construction of the V' is now copied for the local data defining
the moduli functor F and its moduli space M = Spec(U). The new moduli
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functor is denoted by F' and the new moduli space by M' = Spec(U’). The
above construction applied to the universal element in F(U) of M yields an
element of F'(U). There results a morphism of C-algebras U' — U and a
C-morphism f : M — M. Put H := {g € GL(V')| gL' = L'}. We assume
now that Z := {m' € M'(C)| Gal(m') C H} is Zariski closed. Then also
[7'Z ={m e M(C)| Gal(m) C G} is Zariski closed.

We will need the following lemma.

Lemma 2.16 Let G, := {g € GL(V)|g(L) = L}, where L C V is a line.
For any element m = (£ + A, {¢;}) € M(C), with corresponding connection
V, the condition Gal(m) C Gy, is equivalent to the existence of a line bundle
L C M, with the properties:

(1) £ is V invariant, i.e. V(L) C Q(S) @ L.
(2) M/L is a vector bundle.

(3) Lo/2Ly = L, where Ly is the stalk of L at 0.

Proof. Suppose that a line bundle £ C M verifies the properties (1)-(3).
Then clearly L := Ly/2Lg is a Gal(m)-invariant line in V', so Gal(m) C Gy

For the other implication, assume that Gal(m) leaves the line L C V invari-
ant. By Definition 2.13, the solution space W € PVR(m)® V C C[[z]] ® V
is identified with V. We write T for the Gal(m)-invariant line in W, cor-
responding to L under this identification. The Picard-Vessiot field PV(m)
is by definition the field of fractions of PVR(m) Then PV(m) ®c T is a
Gal(m)-invariant line (over the field PV(m)) in PV(m) ®c W. The natu-
ral isomorphism PV(m) @c W — PV (m) ®c¢(,) M, where M = C(z) ®c V,
yields an isomorphism (PV(m) ® W)™ — M. Tt is well known that
N := (PV(m) ®¢ T)%4™ is a 1-dimensional submodule of M. An explicit
reference for this is Proposition 5.12 in [P99]. We observe that M is the stalk
M of M at the generic point £ of Pi,. One associates to N C M the line
bundle £ C M given by £(O) = {l € M(O)| the stalk I of [ belongs to N}
for any open O of PL. Tt is easily seen that £ has the required properties.
O
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Theorem 2.17 Let G C GL(V) be an algebraic subgroup, then
{m € M(C)|Gal(m) C G} is a Zariski closed set.

Proof. We have already shown that the theorem follows from the special
case where a line L C V is given and G = {¢g € GL(V)|g(L) = L}. By the
previous lemma, this is equivalent to the existence of a line bundle £, with
the stated properties. Write d = —deg(L). Since £L C M, we have d > 0.
The line bundle £(d-[o0]) = L&O(d-[oc]) is free and generated by an element
w =10 vzt € H'(P, M(d-[0])), where vy, ...,vq € V = H'(P, M). The
term vy is a non-zero element of L C V and will be fixed. We note that
the condition that M/L is a vector bundle implies that v4 # 0. The same
condition implies that w evaluated at any point s;, i.e. >, visj., is non-zero.

The V-invariance of £ implies that
V: L(d-[o0]) = QS + [o0]) @ L(d - [00])-

Thus Vw € H(P,Q(S + [oo]))®w The vector space H%(P, (S +[o0])) con-
sists of the expressions (37_, Y% it 32L)dz with all g;; € C. After replacing
V by V 4 the differential equation that we obtain is

ki

dz ZZ (z — s;)7 ZUZ ZZ z%;z sz

i=1 j=1 i=1 j=1

The entries of the matrices A;; are in fact regular functions on the mod-
uli space M. In other words, these entries are in U, where M = Spec(U).
We will show in the sequel that there are finitely many possibilities for the
term Y ;_, Z] 1 (Zgz -. Expanding the equation at oo, and comparing the
coefficient of 247! yields dvg = (3_;_, gi1)va. Indeed, Y7 | A;1 = 0 since
V has no singularity at co. Since vy # 0, one has d = > _._, g;1. We note
that this puts a condition on the g;;, namely > . g; ; is a non-negative integer.

For a fixed choice of Y., Zf; . (zgii-)f’ the above differential equation is
regular at z = 0 and has a unique formal solution Y oo v;2" with prescribed

. The coefficients v;, 7 > 1 of this formal solution are, like the entries of
the A, ;, regular vector functions on the moduli space M. In other words,

v, eUQ®YV fori>1.
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Consider for ¢ > d the condition v; = 0. Fix a basis e,...,e, of V over
C and write v; = uy ® ey + -+ + u, Q e, with uq,...,u, € U. Then v; =0
defines the closed subset {m € M(C)| uj(m) = 0for j = 1,...,n}. Thus,

for a given ) ;_ 12; ) zgl; 57> the existence of a solution S vzt (with
vy € L fixed), defines a Zarlskl closed subset of M(C). Since we do not in-
sist on vy # 0, this closed subset describes the points m € M(C) such that
there is a V-invariant line bundle £ C M of degree > —d corresponding
to the line L C V' and with prescribed choice of 377_, 375, oL Further
{m € M(C)| Gal(m) C G} is a finite union of these subsets and therefore a

Zariski closed set.

For the proof of the fact that there are only finitely many possibilities for
> Z g” we will need the following lemma.

Lemma 2.18 Consider a local connection V : N — C|[z]]z *dz ® N, with
N a free C|[z]]-module of rank r and k > 0. There are finitely many elements
A,y As € 272C[27Y], s <7, such that Vw = fdz®@w withw € N\ zN and
f € C((2)) implies that f has the form \;+ R with 1 < i < s and R € C[[#]].

Proof. Tt suffices to prove the following statement:

suppose there exist elements e; ...,e; € N\ zN that satisfy Ve; = fidz Qe;
for some fi,..., fs € C((2)) with f; — f; & C[[2]] for i # j. Then ey, ..., es
are independent over C((z)).

We prove this by induction on s. For s = 1 there is nothing to prove.
Suppose that the statement holds for s — 1 and let e, --- , e, be elements
satisfying the conditions of the statement. Suppose that there is a non-
trivial relation ). he; = 0, h; € C((2)). We may assume that Ay = 1 and
that all h; € C[[z]]. The induction hypothesis implies that all h; # 0 and
that this is the only relation up to multiplication by an element in C((2))*.
Now V 4 applied to the relation e; + Y ._, h;e; yields a new relation, namely

fier + ZZ o(h; + fihi)e; = 0. Hence h} + fih; = fih; for i = 2,...,s, so
h—fi=3+ for i =2,...,s. Therefore we must have hy, ..., hs; € 2C [[z]] and
this leads to the contradlctlon e € zN. O
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We now continue the proof of the theorem. Let us write g for the expression
Sy Zf;l (zgj’;;)j that we are considering. We will use the terminology of
Definition 2.1. A non-zero solution w for Vw = gdz®w induces a non-zero so-
lution ¢;w € N;, ¢;w ¢ (2—s;)N; for the equation V;(p;w) = gd(z—s;) @d;w.
According to the above lemma, there are only finitely many possibilities for
the principal part of g at each point s;. Hence there are only finitely many

possibilities for g. O
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Chapter 3

Singer’s Theorem for families of
differential equations

This chapter is joint work with Marius van der Put.

3.1 Introduction

In this chapter we will define families of differential equations on the projec-
tive line P, parametrized by a scheme of finite type X. As before we suppose
C to be algebraically closed and of characteristic zero. These families are of
a more general nature than the moduli spaces, defined in Chapter 2. The-
orem 2.17 is extended to a family of differential equations of dimension n,
parametrized by some X. Thus the condition “Gal(xz) C G” for closed points
xz of X (i.e., x € X(C)) defines a closed subset of X. The aim is to show
that the set of closed points z € X for which the differential Galois group
Gal(z) of the corresponding equation is equal to G is a constructible subset
of X i.e., of the form U}, (O; N F;) for open sets O; and closed sets F;. This
statement (and the earlier one) has to be made more precise by providing
a suitable definition of “family of differential equations” and a meaning for
the expression Gal(z) C G. Moreover, a condition on the group G is essential.

In his paper [S93], M.F. Singer defines a set of differential operators, by
giving some local data. He proves that under a certain condition on G,

71
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the subset of differential equation with Galois group equal to G is con-
structible. This condition on G will be called the Singer condition. We will
consider the same problem, in our context of families of differential equations
parametrized by a scheme X. We will construct for any group G that does
not satisfy the “Singer condition” an example of a moduli family M such that
{z € M|Gal(z) = G} is not constructible. Finally, from these constructions
one deduces an alternative description of the Singer condition.

3.2 The Singer condition

Let G be a linear algebraic group over C'. First we will recall the Singer
condition on G, as given in [S93]. A character x of G is a morphism of
algebraic groups x : G — G;,,, where G,,, stands for the multiplicative group
C*. The set X(G) of all characters is a finitely generated abelian group.
Let ker X(G) denote the intersection of the kernels of all x € X(G). This
intersection is a characteristic (closed) subgroup of G. As usual, G° denotes
the connected component of the identity of G. The group ker X (G°) is
a normal, closed subgroup of G° and G. Let xi,...,x, generate X (G°).
Then ker X(G°) is equal to the intersection of the kernels of xi,...,x;-
In other words ker X (G°) is the kernel of the morphism G° — G¢,, given
by ¢ = (x1(9),--.,xr(9)). The image is a connected subgroup of G?, and
therefore a torus 7. Hence G°/ker X (G°) is isomorphic to T. Moreover, by
definition, 7" is the largest torus factor group of G°. One considers the exact
sequence:

1 — G°/ker X(G°) — G/ker X(G°) — G/G° — 1.

Since G°/ker X (GY) is abelian, this sequence induces an action of G/G° on
G°/ker X (G®) by conjugation.

Definition 3.1 A linear algebraic group G satisfies the Singer Condition if
the action of G/G° on G°/ker X (G°) is trivial. 3

The Singer condition can be stated somewhat simpler, using U(G) C G, the
subgroup generated by all unipotent elements in G.

Lemma 3.2 U(G) = U(G°) is equal to ker X(G°) and the Singer condition
is equivalent to “G°/U(Q) lies in the center of G/U(G)”.
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Proof. Fix an embedding G C GL(V'), where V is a finite dimensional vec-
tor space over C. First we prove that U(G) is a closed connected normal
subgroup of G. Let I + B, B # 0 be a unipotent element of G. Then
I+ B = P, for some nilpotent element D = Y (—1)*" % 1B’ € End(V). The
Zariski closure {(I + B)*|n € Z} of the group generated by I + B lies in G
and is equal to the group {e'”|t € C'}, which is isomorphic to the additive
group G, over C. Hence U(G) is generated by this connected subgroups of G
and by Proposition 2.2.6 of [Sp98| the group U(G) is closed and connected.
Further U(G) is a normal subgroup and even a characteristic subgroup, since
the set of unipotent elements of G is stable under any automorphism of G.
The connectedness of U(G) implies U(G) = U(G?).

Now we will show that G°/U(G?) is a torus. Since the unipotent radical
R,(G°) lies in U(G®), we may divide G° by R,(G°) and assume G° to be
reductive. Then by [Sp98] Corollary 8.1.6, we have G° = R(G°) - (G°,G°),
where R(G?) is the radical of G°, and where (G°, G°) is the commutator sub-
group of G°. The latter group is a semi simple subgroup, according to the
same corollary. By [Sp98] Theorem 8.1.5, we get that (G°, G°) is generated
by unipotent elements, so (G° G°) C U(G®). Since R(G?) is a torus, its
image G°/U(G?) is a torus, too. This proves U(G°) D ker X (G°). The other
inclusion follows from the observation that every unipotent element lies in
the kernel of every character. Finally, the triviality of the action of G/G° on
G°/U(G") is clearly equivalent to G°/U(G?) lies in the center of G/U(G°).
O

Assumptions 3.3 Let G C GL(V) be a linear algebraic group. For the
moment we assume the following items (see Definition 3.13, Remark 3.14,
Proposition 3.16 and Corollary 3.17).

e The definition of a family of differential equations, parametrized by X.
e The meaning of Gal(z) C G for z € X(C).

e {z € X(C) | Gal(z) C G} is closed.

e {z € X(C) |Gal(z) C hGh™! for some h € GL(V)} is constructible. e

Lemma 3.4 Let G, X be as in the above assumptions. If G has finitely many
proper closed subgroups Hy, ..., H,, such that every proper closed subgroup is



74 CHAPTER 3. SINGER’S THEOREM

contained in a conjugate of one of the H;, then {x € X (C) | Gal(z) = G} is
constructible.

The proof is easy.

Remarks 3.5

(1) If G satisfies the group-condition of the lemma, then G satisfies the Singer
condition, too. This follows from the fact that G/U(G) is a finite group. In-
deed, if T := G°/U(G) # {1}, then one can produce many proper normal
subgroups of G/U(G). For example, for any integer m > 1 the subgroup
T'|[m], consisting of the m-torsion elements of 7. By lifting this subgroups,
we obtain a contradiction.

(2) Consider G := SLy(C). The classification of the proper closed subgroups
H of G states that H is either contained in a Borel subgroup or in a conjugate
of the infinite dihedral group D32 or is conjugated to one of the special finite
groups: the tetrahedral group, the octahedral group, the icosahedral group.
Thus G satisfies the conditions of the lemma and moreover, G/U(G) = {1}.

(3) The infinite dihedral group G = D52 has the properties: G° = Gy,
U(G°) =1 and G/G? acts non-trivially on G°. Thus G does not satisfy the
Singer condition. For this group one can produce moduli spaces M such that
{r e M(C) | Gal(z) = G} is not constructible (see example 3.8).

(4) For the following two examples, namely moduli spaces and the groups G3
and G, the Singer condition is valid, but G' does not satisfy the condition
of the lemma. We will show explicitly that these groups define constructible
subsets. °

Example 3.6 A moduli space with differential Galois groups in G3.

V is a 4-dimensional vector space over C' with basis ey, ...,es. N € End(V)
is given by N(e;) = 0 for i = 1,2,3 and N(es) = e;. The data for the moduli
problem are.

e Three distinct singular points s, s9, s3 € C*. The point oo is allowed
to have a, non prescribed, regular singularity.

e For each singular point s;, the differential operator d(zd_Si) + ziVSi.
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Some calculations lead to an identification GL(4, C) x GL(4, C') — M, where
M is the moduli space of the problem. Let m := (¢, ¢3) denote a closed point
of the first space, then the corresponding universal differential operator is

d N N SN
n +¢2 ¢2+¢3 ¢3_

dz z— 8 Z — 8o Z — S3

Let G := G the subgroup of GL(V) consisting of the maps of the form
I + B, Be; = 0 and Be; € Ce, for i = 2,3,4. The condition Gal(m) C G3
can be seen to be equivalent to ¢o(e1), d3(e;) € Ce;. This describes the
set {m € M | Gal(m) C G} completely. The above differential operator
evaluated at a point of {m € M | Gal(m) C G} has the form

hi h

N
>
w

L
dz

o O OO
o O O
o OO
o OO

where (hla h/?a h3) = 27—151(0, Oa 1) + z7152 (fh f2a f3) + Z7153 (gla 92, 93) Moreover,
f1, f2, f3 are polynomials of degree < 2 in the entries of ¢9 and g, g9, g3 are

polynomials of degree < 2 in the entries of ¢s.

G has many (non-conjugated) maximal proper closed subgroups and there
is no obvious reason why {m € M | Gal(m) = G} should be constructible.
We continue the calculation. The differential Galois group Gal(m), with m
such that Gal(m) C G, is in fact the differential Galois group for the three
inhomogeneous equations y; = h;, i = 1,2,3 over C(z). Thus Gal(m) is a
proper subgroup of GG if and only if there is a non trivial linear combination
c1hy + cohg + c3hs with ¢y, c9, c3 € C such that ' = ¢ihy + cohy + c3hs has a
solution in C(z). Now y exists if and only if ¢~y +cahe + c3hs has residue 0 at
the points s1, s9, s3. The existence of such a linear combination translates into
a linear dependence and the explicit equation fi(s2)g2(s3) — f2(s2)g1(s3) = 0.
This defines a closed subset of {m € M | Gal(m) C G} and therefore
{m € M | Gal(m) = G} is constructible. &

Example 3.7 A moduli space with differential Galois groups in G}, .
The data for the moduli problem are.

e A vector space V' of dimension n over C', with basis ey, ..., e,.
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e Singular points sq,...,s, € C*. We allow co to have a non-prescribed
regular singularity.

e Local differential operators d(zd_sl,) + Zfls ) where eq, ..., e, are eigenvec-
tors for all C; € End(V).

The moduli space M can be identified with GL(V)*"!. At a closed point
m = (¢g,...,¢,) € GL(V)*! the universal differential operator reads

d = 97'Cig;
dz+; z2—8

where ¢ = I. The group G?, = G C GL(V) consists of the maps for which
each e; is an eigenvector. Above the closed subset {m € M | Gal(m) C G}
the differential operator has the form

d LA
L::E+Zz—si’

=1

with A; = C and each A; is a diagonal matrix w.r.t. the basis eq, ..., e, and
having the same eigenvalues as C;. The space {m € M | Gal(m) C G} has a
positive dimension if there is at least one C; with ¢ > 1 having an eigenvalue
with multiplicity > 1. However the number of differential operators L is
finite! Thus only a finite number of algebraic subgroups of G = G}, occur
as differential Galois group Gal(m). One concludes that for every algebraic
subgroup H C G, the set {m € M | Gal(m) = H} is constructible. O

The above example is the general pattern for “families” with differential
Galois groups contained in some commutative algebraic group G. Again,
there are only finitely many distinct differential operators L possible above
the moduli family. Hence there are only finitely many possibilities for the
differential Galois groups. This implies that for every algebraic subgroup
H C G the set of the points with differential Galois group equal to H is
constructible.

Example 3.8 A moduli space with differential Galois groups in D5-2,

Let V = Ce;+Cey. By D52 we will denote the subgroup of SL(V') consisting
of the maps which permute the lines Ce;,Cey. The data for the moduli
problem are.
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e Singular points sq,...,s4 € C*, and oo is supposed to be regular.

1
e For each point s; the differential operator d(z;fsz,)—i— Z_15i ( 6 _Ol ) with
4

respect to the basis eq, es.

The moduli space M for this problem can be made explicit. The universal
differential equation has 4 regular singular points with local exponents 1/4
and —1/4. This is essentially the Lamé equation. It has a closed subset
{m € M | Gal(m) C D52}, Let DS“» C D52 denote the dihedral sub-
group (of order 4n). Tt turns out that D52 and D52 for n > 1 occur as
differential Galois groups Gal(m) for closed points. The conclusion is that
{m € M | Gal(m) = D532} is not constructible! One way to explain this is to
consider the case where C' is the field of the complex numbers. Since the s;
are regular singular points, the differential Galois group is the algebraic clo-
sure of the monodromy group. This monodromy group is generated by four
elements Ay, ..., A; € SLy(C) having product 1 and such that each A? = —1I.
Above the moduli space M essentially all groups with these generators and
relations do occur. Therefore each D52 occurs as differential Galois group.
A detailed study of this moduli space will be given in Chapter 4. &

3.3 Families of differential equations

We will now come to the definition of families of differential equations on
P!, parametrized by a scheme X. We will first recall some facts on local
differential modules.

3.3.1 Formal connections and semi-simple modules

The usual differentiation on the field of formal Laurent series C'((u)) is given

by the formula Y- a,u™ — £ (3 a,u™) :== > a,nu""". For notational con-
venience we will use (in this section) the differentiation f — 6(f) := u-kf.
A differential module M over C((u)) is a finite dimensional vector space
over C((u)) provided with an additive map 6 = 0y : M — M satisfying
§(fm) = fo(m)+6(f)m. Put @ :=J, -, u~/™C[u~t/™]. The Galois group

of the algebraic closure of C'((u)) acts on Q. Take ¢ € Q and let m > 1
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be minimal such that ¢ € u~'/™C[u~'/™]. The differential module F(q) over
C((u'/™)) is defined by E(q) = C((u*/™))e and 6(e) = ge. This module can
also be viewed as a differential module of dimension m over C'((u)). As such,
it depends only on the Galois orbit og of ¢ in Q. We write E(oq) for E(q)
considered as a differential module over C((u)). We note that F(oq) is an
irreducible differential module. The classification of differential modules over
C((u)) can be formulated as follows:

FEvery differential module M over C((u)) can be written uniquely as
5 1 E(0g;) ® M;, where the oqi, . ..,o0q, are distinct Galois orbits in Q and
where the M; are reqular singular differential modules.

We recall that a differential module NV is regular singular if there exists a
basis bi,...,b, of N over C((u)), with the property that the free C[[u]l-
module A := C[[u]]b; + - - - + C[[u]]b, is invariant under §. One associates to
a regular singular N a semi-simple regular singular differential module N,
by the following construction. (compare [Levelt, Jordan decomposition for
a class of singular differential operators. Arkiv for matematik, 13 (1): 1-27,
may 1975]). The operator § leaves u™A invariant for each m > 0. Thus ¢
induces a C-linear endomorphism d,, on A/u™A. The additive Jordan de-
composition of d,, is written as 6, = Om ss + Omnitp- Here ss denotes the
semi-simple part and nilp denotes the nilpotent part. It is easily seen that
the families of endomorphisms {d,, s} and {6, nirp } form projective systems.
Now we write d,5 and 0y, for the induced maps on A. One verifies that
Onip 1s C|[u]]-linear and that d,5(fm) = fdss(m) + 6(f)m for f € C[u]] and
m € A. Both operators are extended to N. The vector space N provided
with d,, is denoted by Ng,. It is a differential module over C((u)) and it is
semi-simple in the sense that every submodule of N, has a complement.

In terms of matrix differential equations this construction has an easy trans-
lation. One knows that N contains a basis such that the corresponding
matrix differential equation has the form u% + A, where A is a constant
matrix (i.e., has entries in C'). Then N, corresponds (on the same basis)
with the matrix differential equation u% + Ags, where A = Ay + Apigp s
the usual Jordan decomposition of A. We note that the “classical” solution
space for the matrix differential equation u% + A contains logarithmic terms
if Am'lp 7é 0.
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Let M be a differential module over C'((u)), with canonical decomposition
®:_1E(0g;) ® M;. Then we define M,s := @;_,E(0q;) ® M; 5. Thus Mg, is
equal to M as vector space over C((u)). One has §y; = 0ur,, + v where v is a
nilpotent endomorphism of M commuting with s, and ;. In particular,
every submodule of M is also a submodule of M,,. Moreover, the differential
module M, is semi-simple.

A formal connection is a connection V : N — C[[u]ju *du® N, where N is a
free C[[u|]-module of finite rank. One associates to N the differential module
M =C((u)) ® N (with d, induced by V, ) The formal connection Ny is
now defined as the connection on N 1nduced by the dys,, on M. We will call
Ny, and M, the semi-simplifications of N and M. Suppose that R C N is a
C/[[u]]-submodule such that N/R is free and VR C C[[u]lu*du ® R. Then
also VR C C[[u]Ju=%du ® R.

3.3.2 Defining families

The statement that we want to prove concerns the closed points of X and
therefore we may suppose that X is reduced. For the same reason we may
suppose (at every stage of the proof) that X is irreducible and affine. As-
sume that X = Spec(R) with R reduced and finitely generated over C. In
order to avoid technical complications we will consider families for which the
singular points (apparent or not) lie in a fixed subset {si,...,s,} of Pg. For
convenience we suppose that 0,00 & {s1,..., s}

A first attempt to define a family parametrized by X = Spec(R), is to con-

sider a matrix differential equation - + A, where A is an Rz, m]

7zs)] ®c V. More explicitely, A has the

linear endomorphism of Rz, Emrry

form E] 1 ZZ = S’ng where each A(i,7) is an R-linear endomorphism of
R®YV. For every closed point z of X, i.e., z € X(C), one writes A(x) for the

Clz %S)]—linear endomorphism of Clz, %] ® YV, obtained by

? (2—s1) (z—s1)-(z—sr
applying x : R — C to A. In this way, d +Aisa famlly of differential equa-
tions on the projective line over C'. The equation + A is regular at z = 0.
One considers R[[z]] ®c V and the canonical map

o

Mod, : R[[z]] ®c V — R[[2]] ®c V/(2) = R®c V.



80 CHAPTER 3. SINGER’S THEOREM

Lemma 3.9 Consider the kernels:
d d
S = ker(% + A, R[[Z]] ®c V) and S(z) = ker(a + A(x), Cllz]] ®c V).

The maps Mod, : S — R ®c V and Mod, : S(x) — V are bijections.
Moreover, the image of S under the map R[[z]]®@cV — C|[z]] ®cV, induced
byx: R— C, is equal to S(x).

Proof. One considers an endomophism F = Fy + zF; +--- of R[[z]] ®c V
(i.e., each F; is an endomorphism of R ®¢ V) with Fy, = 1. One requires
that F' is a “fundamental matrix”, which means that F' + AF = 0. Put
A= Ay+ A1z + ---. This leads to equations

(TL =+ ]-)Fn—l—l + A()Fn =+ Aan_l + o4 AnF() =0 for all n 2 0.

Clearly F exists and is unique. This implies that Mod, : S - R®¢ V is a
bijection. Let F(z), for a closed point x, be obtained from F by the map
z : R — C; then F(z) is a fundamental matrix for - + A(z). The other two
statements of the lemma follow from this. 0

4 1 A(z) is viewed as a differential equation over the ring Cz, m]
Let PV R(x) denote the subring of C[[z]] generated over C|z, m]
by all the entries of F'(z) and the inverse of the determinant of F'(z). Then
PV R(z) is a Picard-Vessiot ring for &£ + A(z). Let Gal(z) denote the group
of the differential automorphisms of PV R(x) over C|z, (2_51)}_(Z_ST)]. By con-
struction S(z) = ker(£ + A(z), PVR(z) ®c V) and Gal(z) acts faithfully on
S(z). Using the isomorphism Mod, : S(z) — V, one finds a faithful action of
Gal(z) on V. We conclude that the above constructions provide a canonical
way to embed every Gal(x) into GL(V).

The next lemma will not be used in the proof of the main result. How-
ever, its contents and the ideas behind it are closely related to our main
theme. In what follows we will prove a converse of this lemma.

Lemma 3.10 (Specialization of the differential Galois group)
We use the above notation. Suppose that R is a domain with field of fractions
K. We can consider d% + A as a differential equation over K|z, m]

Let K denote an algebraic closure of K. Then the following holds:
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(a) the differential Galois group Gy over the field of constants K descends
to an algebraic subgroup G of GL(K ®@ V),

(b) the schematic closure Gr of G as algebraic subgroup of GL(R ® V)
has the property: for every closed point x, with corresponding maximal
ideal my, there is an inclusion Gal(z) C (Gr ® R/my).

We note that this lemma and its proof are rather close to a result of O. Gabber
(see [Kt90], Theorem 2.4.1 on page 39).

Proof.
(a) The solution space ker(£ + A, K[[z]] ®¢ V) is equal to K ®gr S. Let
PV R denote the subring of K[[z]], generated over K|z, =y ] by the

entries of F' and the inverse of the determinant of F'. Then K ®K PVR
is a Picard-Vessiot ring and we write G5 for its differential Galois group.

1

The latter is characterized as the group of the K|z, ﬁ]—linear dif-
1) (2—sr)

ferential automorphisms of K ® PVR. The group G acts faithfully on
K ®¢ V. Choose a basis of V over C. The affine ring of GL(K ®¢ V') can be
written as K[{X;;}7;_,, 7], where det denotes the determinant of the ma-
trix (X; ;). The ideal J defining G is the kernel of the K-homomorphism
¢ : K[{Xi;}i 1, 75] = K ® PVR, given by ¢(X;;) is equal to Fj; (the
(1, 7)-entry of the matrix F'). Since ¢ “descends” to K, the ideal J descends
to an ideal I of K[{X;;}7;_1, 75]- The latter defines an algebraic subgroup
G of GL(K ®¢ V) satisfying G ®x K = G%.

(b) The schematic closure Gg of G is the group scheme over R given by
the ideal Iz := I N R[{X;;}};_,, 55]- The inclusion Gal(z) C G ® R/m,
follows from a combination of Chevalley’s theorem and some properties of
matrix differential operators (or connections). The expression % + A is
seen as a regular differential operator on Spec(R) x (Pg \ {s1,...,5:}). Let
Vi denote the tensor product V*® --- @ V*® V® ---® V (of a copies
of the dual V* of V and b copies of V). There is a K-subspace W of
some finite direct sum K Q¢ @ZVb‘:’ such that G is the stabilizer of W.
The differential operator % + A on R|z, W] ®c V induces a dif-

ferential operator % + B on Rz, m] Qc EBZV‘:’ By differential
Galois theory, K|z, (Z_SI)___(Z_ST)] ®x W is invariant under % + B. Put

W = Wn(R&c ®;V;,'). Then W is invariant under Gz and moreover
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Rz, m] ®g W is invariant under d% + B. The regularity of this

differential operator implies that W is a projective R-module (see loc.cit. for
more details). Let z € X(C). The group R/m,®Gr is defined by the invari-
ance of the subspace R/m, @r W of R/m, ®¢c ®;V;;’ = @;V};*. Furthermore,

the space C|[z %] ®c (R/m, ®g W) is invariant under £ + B(x).

) (z—S1)-- -
By differential Galois theory, the group Gal(z) leaves R/m, ® g W invariant.
Hence Gal(z) C (R/m,; @ GR). O

In our present setup the constructibility result that we want to prove is not
valid. This is illustrated by the rather obvious example: R = C[t] and the
differential operator % + Z_tSI . If the value of ¢ is rational number of the form
75’ with ¢ > 1 and (p,q) = 1, then the differential Galois group is a cyclic
group of order g. For other values of ¢ in (', the differential Galois group is
the multiplicative group G,,. However, the group G,, satisfies the “Singer
condition”.

In order to avoid this and other examples of this sort we will suppose that
there are only finitely many possibilities for the formal local structure of
diz + A(z) at any of the singular points sq,...,s,. Again this is not suffi-
cient for our goal, namely the statement that the set of closed points x with
Gal(z) = G is constructible. The new problem is that the formal isomor-
phism between <L + A(z) at s; and one of the prescribed formal connections
can have a pole at s; of arbitrarily high order. A remedy for this is the
introduction of connections on the projective line over C'. In order to work
out this idea the following (probably known) result on vector bundles on
P% := X xP} is needed. We introduce some notation. Let pry : X xPL — X
and pry : X x P, — P denote the two projections. For vector bundles A
and B on X and P}, we write A® B for the vector bundle pri A® priB. The
line bundle of degree d on P, is denoted by O(d). For Ox ® O(d) = pr;O(d)
we also write Ox(d). We recall that any vector bundle of rank n on P, has
the form O(a;) ® O(as) ® - - - ® O(a,) with unique a; > as > -+ - > a,. We
call the sequence a; > - -+ > a, the type of the vector bundle.

Proposition 3.11 Let X be a scheme of finite type over C' and let M be a
vector bundle on Py of rank n. Let x € X be a closed point. Suppose that
the induced vector bundle M(x) on Pc is free. Then there exists an open
neighbourhood U of x such that the restriction of M to P}, is free.
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Proof. We remark that M(z) denotes the vector bundle on P}, obtained by
evaluating M at x. More precisely, write j, : Spec(C) — X for the morphism
corresponding to z and write g, = j, X id : Pt, = Spec(C) x Py, — X x Pg.
Then M(z) is defined as gi M.

One may suppose that X is affine. Let Dy and D, denote the divisors
X x {0} and X x {oc}. Define the sheaf N = O(—Dy) ® M and consider
the covering of P& by the affine sets Uy = Py — Do, and Uy, = P% — Dy. Put
Up,co = Uy N Us. The following sequence

0— HN) = N(Up) ®N (Us) = N (Upeo) = H'(N) =0

is exact. The two O(X)-modules H(N) and H'(N) are finitely generated.
Indeed, since the natural projection pr : PL — X is proper one has that
pr.N and R'pr,N are coherent. Moreover, H*(N) = H°(X,pr,N) and
HY(N) = H(X, R'pr.N') (by Leray’s spectral sequence). Let m, denote the
maximal ideal of O(X) corresponding to the closed point z. The assumption
that M(z) is free implies that H*(N(z)) = H*(NM(z)) = 0. This implies
that the map a ®o(x) O(X)/m, is a bijection. Hence z does not lie in the
support of the O(X)-module H'(N). After shrinking X, we may assume
that H*(N) = 0 and that « is surjective. The O(Up,)-module N (Up o)
is projective. Therefore N (Up ) is also a projective module over the ring
O(X). Hence the exact sequence of O(X)-modules

0— H'N) = N(Up) ® N (Us) = N (Upe) — 0

splits. The bijectivity of the map o ®o(x) O(X)/m, implies that the mod-
ule H°(NV) ®o(x) O(X)/m, = 0. After shrinking X, we may suppose that
H°(N') = 0. Define the sheaf Q by the exactness of

0N —-M-—=Q9—=0.

Then @ = M/(O(—Dy) ® M) and therefore Q is a vector bundle on
X = X x {oo}. The rank n of Q is the same as the rank of M. After
shrinking X, we may suppose that Q is a free vector bundle on X. The
above exact sequence of sheaves yields: H*(M) = H%(X, Q) = O(X)" and
HY(M) = 0. It suffices now to show that M is generated at every closed
point w of P} by its group of global sections H°(M). This property is
equivalent to the surjectivity of the map H*(M) — M,,/m,M,,, where m,,
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denotes the maximal ideal of the local ring Op1 ,,. The point w lies on a
divisor D = X x {p} for some closed point p of Pi,. Put w = (g,p). Define
the sheaf S by the exact sequence

0-0(-D)d3M—->M—S—0.

We note that O(—D) is isomorphic to O(—D.,). As before one concludes
that S is a vector bundle on X = X x {p} and that H*(M) — H°(X x{p}, S)
is surjective. Since X x {p} is affine, the map H*(X x {p},S) — S,/m,S
(where m, denotes the maximal ideal corresponding to the point w = (g, p))
is surjective. Finally, M,,/m,M,, — S,/m,S, is an isomorphism. O

Remarks 3.12 More on vector bundles on P

(1) We start with an example showing that the type of a vector bundle on
P% is not locally constant, i.e., the type of M(z) is not locally constant in
X. Take X = Spec(C[t]) and consider a vector bundle M of rank 2 on P.
Let 2z denote the usual global parameter on Pf,. Write again Dy = X x {0},
Dy, = X x{oc}, Uy = P — Dy, and U,, = P% — Dy. The restriction of M to
the two affine sets Uy, Uy, is free (since every projective module over a poly-
nomial ring is free). Hence M is given by a matrix A € GL(2, C[t][z, 27]).
This matrix defines a unique double coset GL(2, C[t][z]) - A- GL(2, C[t][z1]).
On the other hand each double coset, as above, defines a vector bundle of
rank 2 on P%. We consider now the vector bundle associated to

z 0
A_(t z‘1>'

For ¢t = 0, this defines the vector bundle O(1) & O(—1) on P;. For ¢t # 0,
this defines the free vector bundle on P,. Indeed,

1 t71z 0 —tt
A=) )
(2) Let M be a vector bundle on Pk of rank n. Then the set of closed
points z € X (C), such that M(z) has type a; > ay > --- > a,, is a con-
structible subset. We sketch the proof of this result. It suffices to consider
the case where X is affine and connected. For a point z € X (C), the type

a; > --+ > a, of the vector bundle M(z) is determined by the dimensions
hi(k,z), i = 0,1 of the cohomology groups H'(P:, M(z) ® O(k)), for all
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k € Z. The degree D of M(z) is independent of 2 € X(C'). By Riemann-
Roch, h°(k,z) — h'(k,z) = D + n for all k. There exists an integer N,
depending on M, such that for kK > N one has h'(k,z) = 0 and for k < —N
one has h°(k,x) = 0. Hence the type of M(z) is determined by the values
of h'(k,z) for —N < k < N. Therefore we have to investigate the depen-
dence of h'(k,x) on z. For convenience we consider h'(0,z). The proof of
Proposition 3.11 asserts that H'(Pg, M(z)) = O(X)/m, @ H'(M), where
m, denotes the maximal ideal corresponding to x. This implies that for any
integer d > 0 the set {x € X(C)| h*(0,z) < d} is open. From this observa-
tion the above statement follows.

(3) The defect of a vector bundle on P, of type a; > --- > a, is defined
as aj; — a,. The reasoning in (2) above implies that for any integer d > 0 the
set {x € X(C)| the defect of M(z)is < d} is open. This generalizes the
statement of Proposition 3.11.

(4) Suppose that X is a reduced, irreducible scheme of finite type over C.
Let M be a vector bundle on P%. Suppose that there exists a closed point
xo € X such that M(xo) is free. Then the set of closed points x such that
M(z) is not free is either empty or equal to a divisor on X.

Sketch of the proof. We may suppose that X = Spec(R) with R a finitely
generated C-algebra having no zero-divisors. We will use the notation of the
proof of Proposition 3.11. The statement that we want to prove is equiva-
lent to: the R-module H'(N) is either 0, or its support is a divisor on X.
Consider again the exact sequence

0— H'WN) 5> N(Up) ®N (Us) = N (Up o) = H'(N) — 0

The assumption that M(zg) is free implies that o becomes an isomorphism
after localizing R at a suitable non-zero element. Thus H%(N) = 0 (since R
has no zero-divisors) and H!(N\) is a finitely generated torsion module over
R. The modules N (Uy) ® N (Us) and N (U ) are projective R-modules of
infinite rank. The above exact sequence is therefore a resolution of H!(N/)
by projective modules of infinite rank. Consider an exact sequence

0—>V1i>Vo—>H1(N)—>O

with 1} a finitely generated free R-module. Then V; is a projective R-module
(of finite rank). After replacing Spec(R) by the elements of an open affine
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covering, we may suppose that V] is a free R-module, too. Furthermore, V;
and V; have the same rank. The support of H'(N) is equal to the closed
subset defined by Det(f) = 0. This finishes the proof.

The above result is also valid in the complex analytic case. A proof is given
by B. Malgrange in [M83], Section 4.

(5) In trying to classify the vector bundles on X x P}, one encounters the
question whether a vector bundle M of rank n on X x Pt has, at least locally
with respect to X, the property that the restrictions of M to the affine sets
Spec(R) x (P — {o0}) and Spec(R) x (Pt — {0}) are free. If the answer
is positive, then M is (locally with respect to X) defined by a double coset
GL(n, R[z])- A-GL(n, R[27!]) with A € GL(n, R[z,27!]). This seems a useful
way to present M. The above question is directly related to the following
question posed by H. Bass and D. Quillen:

Let R be a reqular noetherian ring. Does every finitely generated projec-

tive module over R[z] come from a finitely generated projective module over
R?

There are partial answers to this question (see [L78]). It seems that the
general problem remains unsolved. °

Definition 3.13

A family of differential equations on P!, parametrized by X
Distinct points {sy,...,s,} C Pg\ {0,000} are given. Moreover, a finite set I
of semi-simple formal connections V; : C[[u]]® = C[[u]Ju *du® C[[u]]" (with
i € I) is given. This collection will be called the local data. The next items
are X, M, V.,V where:

(i) X is a reduced scheme of finite type over C.

(ii) M is a vector bundle on P of the form Ox ® N, where A is a vector
bundle on P}

(iii) V is a vector space of dimension n over C, and there is given an iso-
morphism Ny/(z) — V.

(iv) A connection V : M — Q(k[s1] + - - - + k[s,]) @ M.
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For every point z € X(C), we find a vector bundle M(z) on P{, where
M(z) = j2(M), o : {z} x P, — PL. The above data induce a connection
V(z): M(z) = Q(k[s1]+-- -+ k[s;]) @ M(z). For every point z € X(C) and
every j, we write u for the local parameter z — s;. We require that the semi-

—_——— —

simplification of the connection V(z); : M(x)sj — Cl[u]]Ju=du ® M(:c)sj is

isomorphic to V; for some i € I. More precisely, there exists a C[[u]]-linear

isomorphism M (z)
[ ]

— C[[u]]™ that is compatible with the connections.

87,88

Remarks 3.14
(1) A more precise formulation of part (iv) is:

VM= Qi () kX x {si}]) @ M,

where the [X x {s;}] are divisors on P%. Moreover, the integer k occurring
here can be replaced by any integer £ > k without changing the family.

(2) A moduli space M as defined in Chapter 2, is a special case of a family.
Such a moduli problem yields a universal family, parametrized by M. The
corresponding family is given by X =M, M = OP& ® V', and V, such that
the universal family is (M, V, {¢;}).

(3) Let a family, parametrized by, say, X = Spec(R) be given. For every

o —

z € X, we have a full solution space W(z) of V(z) in M(z),. We want
to make an identification of W(x) with V. By (iii) of the definition, we
have an isomorphism Ny/(z) — V. This isomorphism can be lifted to
an isomorphism Ny — C[z];) ® V. The latter is unique up to a C[z],)-
linear automorphism of C[z];) ® V' that is the identity modulo the ideal
(2). The isomorphism Ny — C[2];) ® V' can be extended to an isomorphism
No = C[[#])®V, which is unique up to an element h € GL(C[z],) ® V) that
is the identity modulo (z). We have that M(z) is canonically isomorphic to
N, so the above map gives a canonical way to identify ker(V, ./\//l@()) with V

(viamod z). So the differential Galois group Gal(x) is canonically embedded
into GL(V').

(4) Let a family, parametrized by, say, X = Spec(R), be given. We will
make some changes to this family. The isomorphism V' — AN;/(2) can be
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lifted to a map V' — N;. Now V can be considered as a subspace of the
generic fiber N, using the canonical map My — N¢. Now N is replaced by
N1 := N(l[bi] + - - - + £[b,]) for suitable £ > 0 and points by, -+ , b, # 0, such
that V' C H°(N}). Then we consider the free vector bundle F := OpL®V,
subbundle of N7, and the free vector bundle Fx = Ox ® F.

In general, V(Fx) C Q(>_7_, k[s;]) ® Fx does no hold. At the cost of
introducing some points {ss;1,...,5:} as new (apparent) singularities and
adding finitely many new items to the local data, one obtains a new family,
parametrized by X, with

t
V:Fx— Q(Z k[si]) ® Fx (for a suitable, large enough k£ > 0).

i=1

One of the new singular points s; might be the point co. An automorphism
of P}, which fixes 0, takes care of that. The original family is closely related
to this new family. In particular, Gal(z) C GL(V) remains unchanged for
every x € X. So for the constructibility result that we want to prove, we
may replace the original family by the new one. In what follows we may
therefore (at any stage of the proof) assume that the vector bundle M on
P% is equal to Ox ® N with A a free vector bundle on P{,. Moreover V is
identified with H°(N). In other terms M = Ox ® (Op1, ® V).

(5) For an algebraic subgroup H of GL(V') we write X (C H) (resp. X(H C))
for the set of closed points z € X such that Gal(z) C H (resp. H C Gal(x)).
For two algebraic subgroups H; C H, we will write X (H, C,C H,) for
X(H, C)N X(C Hy). Furthermore, X(= H) := X(H C,C H). The main
result of this chapter is the following. °

Theorem 3.15 Suppose that the linear algebraic subgroup G C GL(V) sat-
isfies the “Singer condition”. Let a family of differential equations on P!,
parametrized by X be given. Then X (= G) is a constructible subset of X.

In the proof we follow some of the steps of the proof given in [S93]. However,
we like to point out some important differences. In our setup, the differential
Galois group Gal(z) is given as a subgroup of GL(V'), whereas in [S93] this
group is only determined up to conjugacy in GL(V). The bounds B and
real algebraic subspaces £(n, m, B) of £(n, m) are not present in our proof.
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The prescribed local connections and the type of the vector bundle M pro-
vide the necessary bounds on the degrees of V-invariant line bundles. The
“constructions of linear algebra”, needed in the proof, are rather involved
for differential operators (especially when one has to produce another “cyclic
vector”). Here the constructions are the natural ones known for differential
modules. Our proof can be adapted to the case where the singular points are
not fixed. However we prefer to avoid the technical complications introduced
by “moving singularities”. Finally, Singer’s result applies to certain sets of
differential equations. It seems possible to make a translation between those
sets of differential equations, and our families of differential equations on P!,
but now with moving singularities.

3.4 Proof of Singer’s theorem for families

Throughout this section we will mainly consider families of differential equa-
tions (M, V,V,{V,}ier), with M = Ox ® (Op, ® V). We will write such a
family as (V,V,{V,}).

3.4.1 The set X(C G) is closed

We denote by V}* the tensor product of a copies of the dual V* of V' and
of b copies of V. One considers a subspace W of dimension d of a finite
sum @;V,". Then G := {g € GL(V)| gW = W} is an algebraic subgroup
of GL(V). According to Chevalley’s theorem, every algebraic subgroup of
GL(V) has this form. Put Z := /\d(eanb‘;’) and L := A\*W. Then G is
equal to {g € GL(V)| gL = L}, too. The subgroups of GL(V'), conjugated
to G, are the stabilizers of the lines hL C Z with h € GL(V). This family
of lines in Z is a constructible subset of P(Z). Write L = Czy. Then the set
{hzo| h € GL(V)} is also constructible. Indeed, the action of GL(V') on Z
and P(Z) is algebraic.

Proposition 3.16 Let be given a family of differential equations on the pro-
jective line, parametrized by X. Then X(C G) is closed.

Proof. We have to extend the proofs of Chapter 2 to the present more
general situation. We suppose that X is reduced, irreducible and affine. Let
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G be given as above as the stabilizer of a (special) line L in a construction
Z. Each step in the construction of Z can be supplemented by a new family
of differential equations parametrized by the same X. Indeed, for the dual
V* one constructs from the given family, a new family obtained by taking
everywhere duals. This works well since the free vector bundle (’)P1C®V has an
obvious dual (’)P1C®V*. For a tensor product, like V,%, one can form the tensor
product of the corresponding vector bundles (including their connections and
the local data). Direct sums and exterior powers are treated in the obvious
way. Thus we find a family, parametrized by X and corresponding to Z,
consisting of a free vector bundle N, identified with Ox ® (O]Pl ® Z), a
connection V on N and a new finite set of prescribed formal connectlons
over C[[u]]. Then, according to Lemma 2.16, the set X (C G) consists of the
closed points z such that there is a line bundle £, contained in A (z) and
satisfying:

(i) £ is invariant under V(z),
(ii) N(z)/L is again a vector bundle,

(iii) Lo/2Ly is equal to L.

We follow closely the proof of Theorem 2.17. Write L = C'vy and let —d < 0
denote the degree of a putative £. Then one finds an equation for the gener-
ator vy +v12 + - - - +vg2¢ of L(d-[o0]) (see the proof of Theorem 2.17). This
equation has the form

where the B, ; are endomorphisms of O(X) ® Z; B; ;(z) is the evaluation of
B;;at z,and T := ) 2 with g;; € C. We note that T does not depend
on x € X. There are émtely many possibilities for 7', according to Lemma
2.18 and Definition 3.13. Each possibility yields at most one value for d.
Now we consider a fixed choice for the term 7. The equation

dz+zz (z — ;) T)(Z“izi)ZO,

=1 j=1 >0
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with the prescribed vy € Z and v; € O(X) ® Z for i > 1 has a unique
solution (which is denoted by the same symbols). One can see v;, for i > 1,
as a morphism from X to Z. This determines a closed subset, say X (7") of
X, defined by v;(z) = 0 for ¢ > d. In other words, X (7) is the intersection
Ni>qv; *(0). Finally, X(C G) is the union of the finitely many closed sets
X(T). O

Corollary 3.17 Let a family (V,V,{V:}icr) of differential equations,
parametrized by X, be given.

(1) Consider a vector space Z of the form /\d(EBZV;f:’) and a constructible
subset S of Z \ {0}. The set of the closed points x € X (C) such that
Gal(z) € GL(V) fizes a line Cs C Z with s € S (for the induced action
of Gal(z) on Z), is constructible.

(2) Let G be an algebraic subgroup of GL(V). The set of the closed points
x € X(C), such that Gal(z) lies in a conjugate of G, is constructible.

Proof.

(1) As in the proof of Proposition 3.16, one supposes that M is equal to
Ox ® (Op1, ® V). There is an induced family (V, Z, local data ). As in that
proof, a fixed choice for the term 7" is made. The element vg is not fixed but
lies in a given constructible subset S of Z \ {0}. The elements v; with ¢ > 1
are now viewed as morphisms S x X — Z. The set N;sqv; '(0) is a closed
subset of S x X. Its image X (7, S), under the projection S x X — X, is
constructible. The union of the finitely many X (7', S) is the set of the closed
points  such that Gal(z) C GL(V) fixes, for its action on Z, a line L of the
form L = Cs with s € §.

(2) Take Z as in (1) and a line L C Z such that G = {g € GL(V)| gL = L}.
Write L = Cvg. Then (1), applied to the constructible set

S = {hvw| h € GL(V)}, yields (2). O
3.4.2 Galois invariant subspaces and subbundles

Let a family of differential equations (V,V, {V;}), parametrized by a reduced,
irreducible, affine X be given. Let W be a subspace of V' such that W is



92 CHAPTER 3. SINGER’S THEOREM

invariant under all Gal(z). Our aim is to prove that there is a subbundle
of Ox ® (Oﬂmc ® V), invariant under V, corresponding to W. We start by
discussing the special case where W = Ce (with e # 0). We can give V 4 in
the explicit form =

where the A;; are O(X )-linear endomorphisms of O(X) ® V' and where
>_jA1; = 0. We return to the proof of Theorem 2.17 and its terminol-

ogy. For a fixed z € X(C), there is a term 7' =3, ; (z“hs’) with all g; ; € C

such that Zj g1,j is an integer d > 0 and there is a solution vy+v12+- - Fvg2®
of (£ + A(z))(vo + v1z + - -+ + v42%) = T(vo + v1z + - - - + v42%), such that
vg = e and vy # 0. Moreover, there are only finitely many possibilities for 7.
Now we fix T and consider the equation (& + A)(3 0,5, viz") = T(X ;54 vi2')
with 9 = e and v; € O(X) ® V for i > 1. This equation has a unique
solution. The closed subset of X given by v;(xz) = 0 for ¢ > d, is denoted by
X(T). By assumption X is the union of the finitely many sets X (7"). Since
X is irreducible, X is equal to a single X (7'). We continue with this 7.

Let vg + v12 + - - - + v42% denote the solution corresponding to this T (with
again vg = e and v; € O(X) ® V for ¢ > 1). It is, a priori, possible
that vy is identically zero. Let ¢ be maximal such that v, is not identi-
cal zero. It is also possible that vy + v1z + - - - + v,2¢ is divisible by some
(z — sj). We divide vo + v1z + - -+ + vz by (2 — s81)™ --- (2 — s,)™ with

my,...,m, > 0 as large as possible (this changes the T" as well). The result
is a section, say vy + w1z + - - - + wyz9, of M(q - [00]) such that none of the
expressions w, and vy + wis; + -+ + qu? for j =1,...,r, is identical zero.

Let X' be the open, non-empty, subset of X given by w,(z) # 0 and the
vo +wi(x)s; + -+ +w,(x)s§ # 0 for j =1,...,7. We claim that the section
votwi 2+ - ~+wyz? of M(g-[oo]) does not vanish on X’ xPg,. For points (z, 00)
or (z,s;) with = a closed point of X', this is obvious. For a point (z, s) with
s ¢ {s1,...,8,00}and x € X'(C), the expression vo+wy(z)z+- - - +w,(x)z?
is a solution of the differential operator & + A(z) — T Since this operator
is regular at s, the vanishing of vy + wi(z)s + --- + w,(x)s? implies that
vo + wyi(2)z + - - - + wy(x)2? is identical zero. This contradicts wy(z) # 0.

In what follows, X is already replaced by the non-empty open subset X'.
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In the next steps, we will shrink X even further. Let 7 = Ox ® Op1,. The
line bundle F is embedded into M(q - [oc]) by sending the global section 1 of
OPIC to vg + w1z + -+ -+ wyz?. This induces a connection on F and local data
for F. Moreover, we identify (Op1)o/(z) with Cvg, by sending 1 to vy = e.
Now we consider £ := F(—q - [00]) = Ox ® Opy(—¢ - [00]). The above data
make (L, V,Cuvy, local data ) into a family, parametrized by X.

The quotient Q := M/L is again a vector bundle on P} with an induced
connection and induced local data. After shrinking X, there exists a vec-
tor bundle N on Pg such that @ = Ox ® N. A choice of an isomorphism
A : Ny/(2) = V/Ce induces an isomorphism Qqy/(2) = Ox ®(V/Ce). We re-
quire that this map is induced by the given isomorphism M;,/(z) = OxQV..
For every closed point x of X, there is an induced exact sequence of connec-
tions 0 — L(z) - M(z) — Q(z) — 0 on P}. The action of Gal(z) on V
induces the actions on C'e and V/Ce for the connections £(z) and Q(x). We
come now to the general result.

Proposition 3.18 Let (V,V,{V;}) be a family, parametrized by a reduced,
irreducible scheme X of finite type over C. Let W C V' be a proper subspace
such that W is invariant under Gal(z) for all z € X(C). After replacing
X by a non-empty open subset, there exists a family (N, V*, W, local data )
parametrized by X such that:

(i) NV is a subbundle of M = Ox ® (Opy, ® V), invariant under V. More-
over, V*, the local data of N and the isomorphism Ny/(z) = Ox @ W
are induced by those of M.

(ii) The sheaf Q := M/N is a vector bundle on P, isomorphic to Ox ® S
for a suitable vector bundle S on ]P’lc. Moreover, Q can be made into
a family, parametrized by X, with connection, local data, and isomor-

phism Qy/(z2) = Ox & (V/W), induced by those of the family M.
(iii) For every closed point x € X (C), the ezact sequence
0 — N(z) = M(z) = Q(x) — 0 of connections on Py, ,

has the property that the action of Gal(z) on V induces the actions
of the differential Galois groups on W and V/W, that are produced by
N (z) and Q(z).
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Proof. Put d =dimW. The case d = 1 is discussed above. For the general
case one considers L = A®W < A*V and the family (A M, ...) associated
to A% V. One finds a line bundle £ c A* M (above a suitable open subset of
X) with the required properties. This line bundle is decomposable since the
line L C /\d V is decomposable. Thus there exists a vector bundle N' ¢ M
(above a suitable open subset of X) with A*V" = £ and N has the required
properties. In particular, @ is a connection on P%. It is not difficult to
provide N/ and Q with the additional structure, which makes them into
families, parametrized by X. This proves (i) and (ii). Part (iii) follows from
the explicit construction. O

Proposition 3.18 is a sort of converse of Lemma 3.10. Indeed, let K denote
the function field of X. The assumption that I is invariant under all Gal(z)
implies that the differential Galois group H C GL(K ® V) of the generic
differential equation on Spec(K) ® P, leaves the subspace K ®¢ W invariant.

Proposition 5.1 and Corollary 5.3 of Hrushovski’s paper [H02] is also related
to Proposition 3.18 above.

3.4.3 Constructions of linear algebra

Let H be an algebraic subgroup of GL(V'). In other words, V is a faithful
H-module. Let W be another H-module. It is well known that W can be ob-
tained from V' by a “construction of linear algebra”. Explicitly, W = W, /W7,
where Wi C W, are H-invariant subspaces of a finite direct sum &;V".

Proposition 3.19 Let a family (V,V,{V;}), parametrized by a reduced, ir-
reducible scheme X of finite type over C, be given. Let H be an algebraic sub-
group of GL(V) and suppose that Gal(z) C H for every closed point v € X.
For any construction of linear algebra W := Wy /W1, as above, there ezists
a family (N, V, W, local data ), parametrized by a non-empty open subset U
of X such that:

(i) For every closed point x € U(C), the connection (N'(z),V(z)) on P
15 obtained by the same construction.



3.4. PROOF OF SINGER’S THEOREM 95

(ii) The action of Gal(z) on W, induced by the construction of linear al-
gebra, coincides with the action of the differential Galois group of the
connection N'(x) on W.

Proof. For an H-module of the form V = GB,Vb‘:l the construction of the
new family, parametrized by X, is discussed in the proof of Proposition 3.16.
For an H-submodule W5 we apply Proposition 3.18 and we have to replace
X with an open subset of X. For a H-submodule W; of W, one applies
Proposition 3.18 again. The result is a family, parametrized by an open
subset of X, corresponding to the H-module W5/W;. The construction of
(N, W,...) implies at once the properties (i) and (ii). O

3.4.4 The set X(U(G°) C) is constructible

We introduce some notation. Let H be a linear algebraic group over C act-
ing upon a finite dimensional vector space W over C. For every character
X : H — G, = C* one defines W, :={w € W | hw = x(h)w for all h € H}.
This is a subspace of W. Let xi,...,x, denote the distinct characters
of H such that W,, # 0. Then >, W,, C W is in fact a direct sum
®;_,W,,. This space is denoted by Chy(W). As before, an algebraic sub-
group G C GL(V) is given. The group U(G°) = U(G) denotes the algebraic
subgroup of G generated by all the unipotent elements of G. Any character of
G? is trivial on U(G°) and G°/U(G°) is a torus. It easily follows that for any
G-module W one has Chgo (W) = WU(@) (i.e., the set of U(G®)-invariant
elements w € W). An essential result is the following.

Theorem 3.20 (M. F. Singer)
There exists a faithful G-module W such that for every subgroup H of G the
following statements are equivalent.

(1) U(G°) C H.
(2) Chee(W) = Chpunge(W).

We note that the inclusion Chgo (W) C Chynge (W) is valid for any G-module
W. Moreover, for any G-module W, the implication (1)=-(2) holds. Indeed,
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U(G°) C H implies that U(G°) C H° C H N G°. One has U(G°) = U(H"?),
hence

Chynge(W) C Chyo(W) = WYH?) = WU = Chgo (W).

For the rather involved proof of the existence of a faithful G-module W for
which the implication (2)=-(1) holds, we refer to [S93].

Corollary 3.21 Put m := [G : G°|. There exists a faithful G-module W
such that for every subgroup H of G the following statements are equivalent.

(i) U(G®) C H.

(il) For every r < m™ and for every H-invariant decomposable line
L=Cui®@us®---®u, C Sym(W,r), the elements u,,...,u, belong
to ChGo (W)

Proof. W will denote the G-module of Theorem 3.20.

(i)=-(ii). As remarked above, the implication (1)=(2) in Theorem 3.20
holds for every G-module. We have u; ® -+ ® u, € Chyngo(Sym(W,r)),
S0 U @+ @ u, € Chao(Sym(W,r)) = Sym(W, 7)Y, Let z,...,2, de-
note a basis of W over C. The algebra @,,>oSym(WW, m) is identified with
Clzy,...,x,]. The group G acts linearly on Clzy,...,z,] and the element
u:=u; Q- ®u, is a homogeneous polynomial which is a product of homo-
geneous linear terms. From the U(G?)-invariance of u, the connectedness of
U(G°) and the unicity of the decomposition of u (up to scalars and order),
one deduces that g(u;) is a C*-multiple of u; for every g € U(G°) and every
i. We find that u; € Chygey(W) = WU(E) = Chgo (W) for all 4.

(ii)=(i). We will show that (ii) implies condition (2) of Theorem 3.20. It
suffices to show that any HNG°-invariant line Cu C W belongs to Chgo (W).
The group H N G° is a subgroup of H of index at most m := [G : G°]. There
is a normal subgroup H of H contained in H NG, such that [H : H] < m™.
Let hi,...,h, denote representatives of H/ H. Then the line spanned by
hiu @ hou ® - - - @ h,u € Sym(W, r) is decomposable and invariant under H.
By (ii), h1u € Chgo(W) and so u € Chgo(W). a

Proposition 3.22 Let a family (V,V,{V;}), parametrized by an irreducible,
reduced X , be given. Let G be an algebraic subgroup of GL(V'). Suppose that
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Gal(z) C G holds for every closed point x of X. There exists an open non-
empty subset X' such that the set X'(U(G°) C) is constructible.

Proof. Let W be the G-module having the properties of Theorem 3.20
and Corollary 3.21. By Proposition 3.19, there corresponds to W a family
(N, V,W,...), parametrized by an open non-empty subset X’ of X. Again
we may suppose that A is free. Consider some integer r with 1 < r < m™,
where m := [G : G°]. The set S(r) of elements v = u; ®- - - Qu, € Sym(W,r)
with all u; # 0, and not all u; belonging to Chge. (W), is constructible. By part
(1) of Corollary 3.17, the set X'(r), consisting of the closed points z € X'(C)
such that Gal(z) fixes a line C'u C Sym(W, r) with u € S(r), is constructible.
X'(U(G°) C) is constructible since it is, by Corollary 3.21, the complement
in X" of Uy ¢ X' (1)- =

3.4.5 The final step, involving the Singer condition

As before, an algebraic subgroup G C GL(V) is given. We suppose that
G satisfies the “Singer condition”. Let a family F := (V,V,local data),
parametrized by an irreducible, reduced X, be given. We will show, by in-
duction on the dimension of X, that X (= G) is constructible.

We have shown that there exists an open non-empty X' C X such that
X'(U(G°) C, C G) is constructible. By induction, {z € X\ X' | Gal(z) = G}
is constructible. After replacing X by an irreducible component of the set
X'(U(G°) c,C G), one has U(G°) C Gal(z) C G for all z € X.

Consider a faithful G/U(G°)-module W. The family F induces a family
G = (N,V,W, local data), parametrized by X. For every z € X(CO),
one has Gal(z) € G/U(G?). For the family G, we have to prove that
X (= G/U(G")) is constructible. We change the notation and write G for
G/U(G°) and V for W. If G is finite, then an application of Proposition 3.16
finishes the proof. If GG is infinite, then G is a torus and G° lies in the center
of G (this is precisely the Singer condition).

We continue the proof. For a closed point z and a singular point s; one

e~

obtains a differential module M(z,s;) = C((z — s;)) ® M(x),, over the

S

differential field C'((z — s;)). Let PV F(x,s;) denote a Picard-Vessiot field
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for this differential module. The formal local Galois group Gal(z, s;) is the
group of the differential automorphisms of PV F(x,s;)/C((z — s;)). Let
PV'F D C(z) denote the Picard-Vessiot field for the generic differential mod-
ule M(z)¢ over C(z). The differential Galois group Gal(z) is the group of the
differential automorphisms of PV F/C(z). This group is canonical embed-
ded into GL(V) by our constructions. There exists a C'(z)-linear embedding
PVF C PVF(z,s;). This induces an injective algebraic homomorphism
Gal(z, s;) — Gal(x). Another embedding changes this homomorphisms by
conjugation (with an element in Gal(x)). The connected component of the
identity Gal(z, s;)° is mapped to a subgroup of Gal(z)° C G°, and lies there-
fore in the center of G and Gal(z). In particular, the image of Gal(z, s;)° in
G does not depend on the chosen embedding PVF — PV F(z,s;).

We note that the local connection M(z, s;) is semi-simple since the formal
local differential Galois group does not contain G,. Indeed, by construc-
tion U(G°) = {1}, so Gal(z) does not contain a copy of G,. Now there
are finitely many possibilities for the equivalence class of M(z,s;). It is
easily seen that this equivalence class depends in a constructible way on x.
Therefore there exists an open non-empty subset of X, where the equiva-
lence classes of M(z, s;) does not depend on z. After restricting to this open
subset, all the differential modules M(z, s;) are isomorphic. In particular,
PV F(z,s;) and Gal(z, s;) do not depend on z. We will write PV F(s;) and
Gal(s;) for these objects. For a fixed embedding PVF — PV F(s;), one
has a fixed image of the groups Gal(z, s;) = Gal(s;) into Gal(z). Moreover,
the image of Gal(z, s;)° into Gal(xz) does not depend on any choice and is
independent of z.

Let H C G° denote the subgroup, generated by the images of all Gal(s;)°.
Then H does not depend on x and H is a connected normal subgroup of
G. Now we take a faithful G/H-module W and its corresponding family,
parametrized by a non-empty open subset X' of X. For notational conve-
nience, we replace G with G/H. For this new family, parametrized by X',
one has:

(i) the differential Galois groups are contained in G,
(ii) the formal local differential Galois groups are finite,

(iii) the singularities are regular singular,
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(iv) the group Gal(x) is generated (as an algebraic group) by the finite local
differential Galois groups.

We have to show that X'(= G) is constructible. By [BS64] Lemme 5.11
(also known as Platonov’s Theorem), there is a finite subgroup E C G that
maps surjectively to G/G°. The surjective map G:=G°x E — G has a
finite kernel. The group G has the property: any subgroup generated by
s subgroups, each one of order bounded by some D, is finite (and in fact
contained in G°[m| x E for a suitable m depending in D). Thus the same
statement holds for G. It follows that all Gal(x) are finite. If G° # {1},
then X'(= G) = 0. If G° = {1}, then G is finite and therefore X'(= G) is
constructible.

3.5 Non-constructible sets X (= G)

The aim of this section is to produce for any linear algebraic G' that does not
satisfy the “Singer condition”, a family of differential equations, parametrized
by some X, such that X (= G) is not constructible. We start by investigating
a rather special case namely, G is a semi-direct product G =T X E. Here F is
a finite group and 7 is a torus. Furthermore, there is given a homomorphism
of groups ¢ : E — Aut(T). The group structure of G is then defined by the
formula ete™ = 1)(e)(t). The induced action ¢ of E on the character group
X(T) of T, is given by the formula (¢(e)(x))(t) = x(e te).

Lemma 3.23 The following properties of G =T x E are equivalent.
(i) > .crim(p(e) — 1) has finite index in X (T).
(i) Neer ker(¢(e) —1) = 0.
(iii) The E-module X (T) ® Q does not contain the trivial representation.
(iv)

The center of G is finite.

Proof. The vector space X(T) ® Q is an E-module and can be written
as a direct sum of irreducible E-modules I1,...,I.. Consider a non-trivial
irreducible representation p : £ — GL(W) over Q. Then the submod-
ule Y, pim(p(e) — 1) of W is not zero and hence equal to W. Moreover,
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Necr ker(p(e) — 1) is a proper submodule of W and hence equal to {0}.
For the trivial, 1-dimensional representation p : E — GL(Q), one has that
Y ecrim(p(e) — 1) = 0 and (.. ker(p(e) — 1) = Q. This proves the equiv-
alence of (i),(ii) and (iii). The elements of T' can be considered as group
homomorphisms ¢ : X(7T) — C*. Now ¢ lies in the center of G if and only if
x(e7'te) = x(t) for every x and every e € E. This translates into: ¢ is equal
to 1 on the submodule ), _,im(¢(e) —1). This proves the equivalence of (i)
and (iv). a

Lemma 3.24 As above G = T x E. Suppose that X(T) @ Q is a non-
trivial 1rreducible E-module. Let H be an algebraic subgroup of G which
maps surjectively to E. Then:

(i) If H # G, then there exists an integer n > 1 such that H C T[n] x E.
Here T[n] denotes the subgroup of T consisting of the elements with
order diwviding n.

(ii) Lete € E have orderm > 1 and lett € T be given as a homomorphism
t: X(T)— X(T)/ker(¢(e) — 1) = C*. Then (te)™ = 1.

(iii) There exist integers N, M > 1 and subgroups G, C T[n|xE for infinitly
many n > 1 such that the following holds.

(a) The index of Gy, in T[n] x E is bounded by a constant independent
of n.

(b) G and every G, is generated, as an algebraic subgroup, by N ele-
ments of order < M.

Proof.

(i) The subtorus (H NT)° of T is invariant under the action of F on 7. For
let t € HNT, then for any e € E there exists an element s € T such that
se € H, so ete™' = sete”'s™! € H. We find that H N T is invariant under
the action of E, so the same holds for (H NT)°. Let N denote the kernel of
the surjective homomorphism X (7') — X ((H NT)°), then X(7')/N has no
torsion and (H NT)° consists of the homomorphisms ¢ : X(7T) — C* which
are 1 on N. If N = X(T), then H is finite and clearly contained in T'[n| x E
for some n > 1. If N # X(T), then N =0 and H = G.
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(ii) One verifies that

(te)™ =t-v(e)(t) - (e*)(t) - (™ )(t)-

For any character x one finds

xX((te)™) = x(t) - (dle™)x) (1) -+ (dle™™ x)(1).

Therefore the only thing we have to show is that ¢ has value 1 on the sub-
module (1+ ¢(e™!) +---+@(e™™ ™)) X (T) of X(T). Since this submodule is
contained in ker(¢(e™') — 1) = ker(¢(e) — 1), one concludes that (te)™ = 1.

(iii) For G one takes as set of generators E and an element te, with e € E of
order m, t € T of infinite order and te of order m. It follows from (i) that G is
generated, as an algebraic subgroup, by this set. Consider an integer n > 1.
Let G, be the subgroup of T[n| x E generated by E and for every e € E a
collection of products te, with ¢ € T', that we now describe. Let e € F have
order m > 1. Take a Z-basis by, ..., b, of X(T')/ker(¢(e) — 1) and define the
homomorphisms Ay, ..., h, : X(T')/ker(¢(e) — 1) — C* by hi(b;) =1ifi # j
and h;(b;)) = ¢, fori =1,...,r and with (, a fixed nth root of unity. The t;e
that we use as generators of Gy, are t; : X(T') — X (T)/ker(é(e) — 1) o,
Part (b) is clear. For the proof of part (a) we consider the obvious map
a: X(T) - M = @eepX(T)/ker(¢p(e) — 1). This map is injective by
Lemma 3.23. For every homomorphism h : M — p,, (here p, denotes
the group of the mnth roots of unity), the element ¢ = h o a belongs to
G,. Let N denote the smallest submodule of M such that im « C N
and M/N has no torsion. Then N is a direct summand of M, so the im-
age of Hom(N, p,) — Hom(X(T),u,) = T[n] is the same as the image
of Hom(M, p,) — Hom(X(T), u,) = T[n], and is therefore contained in
G,,. For infinitely many of the n, we have Hom(X(T'), u,) C Hom(N, ),
and [Hom(X(T), u,) : Hom(N, u,)] = [N : im «]. For these n we have
[Tn] X E : Gy] = [T[n] : G, NT[n]] < [Hom(X(T), n) : Hom(N, p,)], so
[T[n] x E:G,] <[N :im ] < co and (a) follows. O

Proposition 3.25 Suppose that C is the field of the complex numbers C.
Let G = T % E and suppose that X(T) @ Q is an irreducible E-module.
There is a moduli space M such that M(= G) is not constructible.
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Proof. Let G C GL(V) be a faithful irreducible representation. Fix a finite
subset {si,...,s,} of C* and integers d; > 1 for i = 1,...,r. Let m; denote
the fundamental group of Pt \ {si,...,s,} with base point 0. Take loops
Aty..., Ay € mp around the s points such that m; is generated by Ay,..., A,
and such that the only relation between these generators is Ay --- A, = 1. Let
Gpn, n € I C 7Z be subgroups of G as given by Lemma 3.24. By the previous
lemma we get that for a suitable choice of r and the d;, and an infinite subset
I, C I, there exist homomorphisms p, p, : 1 — G C GL(V), n € I; with
the following properties:

(a) p(N\;) and the p,(\;) have order d; (fori=1,...,r),

(b) the image of p is Zariski dense in G and G,, = im p,, for every n € I;.

Let te be the element used as a topological generator of GG, as in the proof
of Lemma 3.24. Some continuity argument shows that the eigenvalues of
te and e are the same. It follows that there is an infinite set I, C I; such
that for each i the set of eigenvalues of p,();) and p();) are the same for all
n € I,. The Riemann-Hilbert correspondence attaches to each p,, n € Iy
a differential module M,, = C(z) ® V over C(z) (unique up to conjugation,
see [PS03], Theorem 6.15). For each M,, and each i, there is a unique lattice
A, C C((z — s1)) ® M, with the following property. A,; has a basis, on
which the differential is given by d(z‘fsl,) + jféi’ where A, ; is a diagonal map
with diagonal entries in [0,1) N Q. We can take A,; independent of n. By
[PS03] Lemma 6.18, these data define a unique connection (M,, V) with
generic differential module M,,. Now M, is in general not free, but has the
form O(a1) ® --- ® O(a,) with a; > --- > a, and v := dimV. The sum
ay + - - -+ ay is fixed since the local exponents of AYM,, are given. Since p,, is
irreducible the defect of M,, is uniformly bounded (see [PS03], Proposition
6.21). It follows that there is an infinite subset I3 C I, such that M,, is of type
a; > --- > a, for all n € I3. The embedding of V' in M,, and the regularity of
M, at the point z = 0 yield a canonical isomorphism C[z],) ® V' — (My)o.
One defines now a moduli problem by fixing the type of the vector bundle
M (namely a; > --- > a,), an identification C[z];) — M, and the above
local data. There is a universal family, parametrized by a variety M. Then
M(= G,) is not empty for n € I5. We remove from M(C G) the union of
the finitely many closed subsets M(C T x E') with E’ a proper subgroup
of E. For notational convenience we call the result again M(C G). The set
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M(= G) is the complement in M(C G) of the sets Z, := M(C T[n!] x E)
for n > 1. It suffices now to show that U,>1Z, is not constructible. Indeed,
M(= G) is the complement in the closed set M(C G) of the non-constructible
set UnZIZn

By construction, {Z,} is an increasing sequence of closed sets, i.e., Z,, C Z, 11
and Z, # UjenZ; ¥V n € N. Suppose that this union is equal to U%_,0; N F;
with open sets O; and closed sets F;. For some i the sets Z, N (O; N F;) again
form an increasing sequence of closed subsets. After replacing O; N F; by
a suitable irreducible component, say Y, we have an increasing sequence of
closed subsets Y,, = Z, N'Y with union Y and such that each Y, # Y. This
is not possible because the field C is uncountable. O

Remarks 3.26
(1) The moduli space m occurring in the proof of Proposition 3.25 is in gen-
eral not the one studied in detail in Chapter 2, since the vector bundle M

is not free. Suppose that one of the local data d(szi) + zi‘;i is such that the
eigenvalues of A; have multiplicity 1, then one can change each M, (with
n € I) into a free vector bundle by shifting the eigenvalues of A; over inte-
gers. There are only finitely many ways to do this. Thus for some infinite
subset I' C I one single change of A; will make all M,, with n € I' into a free
vector bundle. Now one can define the moduli space M by a free vector bun-

dle M with H°(Pg, M) identified with V and with the prescribed local data.

(2) The proof of Propostion 3.25 extends to the case where C is any al-
gebraically closed field, not algebraic over Q. Indeed, it suffices to consider
a field C of finite transcendence degree > 1. This field is embedded into C.
The moduli space M of the proof descends to C, i.e., M = My ®¢ C for a
suitable space M.

The group G is given as an algebraic subgroup of GL(V') where V is a vector
space over C. One easily verifies that M(C G ®¢ C) = Mg (C G) ®c C. The
same statement is valid for the groups G,,. It follows that My (= G) is not
constructible. °

We now give the proof of the general result, omitting some of the more
obvious details.
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Theorem 3.27 Let C be the field of the complex numbers C. Suppose that
the linear algebraic group G does not satisfy the Singer condition. Then there
is a moduli space M such that M(= Q) is not constructible.

Proof. As we will show, it suffices to prove this theorem for a linear alge-
braic group G’ for which there exists a surjective morphism G' — G with
finite kernel. By [BS64] Lemme 5.11, there exists a finite subgroup E of G
such that £ — G/G° is surjective. Thus we may replace G with G° x E.
The group G°/U(G") is a torus.

Lemma 3.28 (We use the above notations) There is a torus T C G°, in-
variant under conjugation with the elements of E, such that T — G°/U(G°)
1s surjective and has a finite kernel.

Proof. First we will assume G° to be reductive. Then by [Sp98] Corollary
8.1.6 (G°, G°) is semi-simple and G° = (G°, G°)- R(G?), where R(G®) denotes
the radical of G°. By [Sp98] Proposition 7.3.1, R(G?) is a central torus of
G° and R(G°)N(G°,G?) is finite. Furthermore, by [Sp98] Theorem 8.1.5, we
have (G° G°) C U(G®). We have a surjective map R(G°) - G°/(G°, G°),
so G°/(G°,G°) is a torus, and we find (G°, G°) = U(G°). The subgroup
R(G°) C G is a characteristic subgroup, so in particular eR(G°)e™" = R(G°)
for all e € E. We find that we can take "= R(G°).

We now consider the general case. We define 7" to be a maximal torus
in R(G°). We have R(G°) = T x R,(G°), where R,(G°) is the unipotent
radical of G°. The image of R(G°) under the map 7 : G° — G°/R(G®) is the
radical of G°/R,(G?), and clearly n(R(G°)) = w(T"). We find that 7 defines
an isomorphism of 7" with the radical of G°/R,(G?), so the cannonical map
T — G°/U(G") is surjective and has a finite kernel. The only thing left to
show is that 7" is invariant under conjugation with the elements of E. For
e € E, we have that eTe™! is again a maximal torus in R(G°), so we can
write eTe™' = rTr~" for some r € R(G°). Because R(G°) = T x R,(G°),
we can take r € R,(G°). Let N := {u € R,(G°)|[uTu ! = T}, then N is a
normal subgroup of R,(G°) and we find a map ¢ : E — R,(G°)/N,e — r.
Let e € E, then e is semi-simple, so c(e) is semisimple, but also unipotent,
because c(e) € R,(G®)/N. Therefore c(e) = 1, Ve € E, so indeed T is
invariant under conjugation with the elements of E. O
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Thus we may replace G° with U(G®) x T. After replacing 7" with a torus
T' such that 7" — T is surjective and has a finite kernel, one can write T’
as a product of two tori 7} and 75, both invariant under conjugation by E
and such that the group 7, x E satisfies the assumptions of Lemma 3.24.
To be precise, Let X (7T') be the character group of 7', which has a structure
of E-module. Then we can write X(7) ® Q as a direct sum of irreducible
E-modules, say X(T)® Q = D; & ---® D,. Since G does not satisfy the
Singer condition, we may assume that D; is a non-trivial E-module. Let
Xy be the projection of X(7') on D; and X; the projection of X(T') on
Dy@---@®D,. Then X(T) C X; & X, has finite index. Now let 7; be a torus
with X (7;) = X;, i = 1,2, then 7" = T} x T2, has the desired properties.
The result after these changes is a group G’ of the form

(U(G°)xTy) x (Ty x E)

which maps surjectively to G and has a finite kernel. We will construct a
moduli space M such that M(= @) is not constructible.

One takes a finite subset {by, ..., b, s1, ..., s, } in C*. The fundamental group
71 of the complement of this set in Pg, with base point 0, is given generators
M1y -y Mty AL,y - - -y A according to loops around these points. The only rela-
tion is pug -« - - A - - A, = 1. We will consider homomorphisms p : 7; — G’
by assigning images for these ¢ 4+ s generators. For notational convenience
we will ignore the relation between the generators of ;. The trick which
allows us to do so is the following. One doubles the finite set by adding

new points sy, ..., sy, b, ..., b]. The fundamental group has now generators
My ey oty Ay ooy Ay Any oo AT, 107, -« o, 47. The only relation is their product

being 1. Suppose that we want to assign elements g1,..., ¢, hi,...,h, € G’
to p1,...,A-. Then for the larger fundamental group, we complete this by
assigning b1, ... hTY, g7, ..., g7t to the generators A7, ..., ui. The homo-
morphisms p!, : 1 — G’ that interest us are given by:

(a) ph(p1)y - pn(pe—1) € U(G®); these elements are unipotent, # 1 and
they generate U(G°) as an algebraic group. Moreover, these elements
will not depend on n.

(b) pl, (1) € T1 which generates T; as an algebraic group. Moreover, this
element will not depend on n.
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(c) pl,(A1),-.-,pL(A) € Ty X E are chosen as in the proof of Proposition
3.25.

As above this is completed by assigning values to uy,...,A]. The homo-
morphism p,, : m — G are obtained by composing pf, with G' — G. We
take an irreducible faithful G-module V. Riemann-Hilbert (see [PS03] The-
orem 6.15) produces a differential module M,, = C(z) ® V with singularities
in {by,...,81,...,a%,...,0;,...,bi}. The local monodromies at the points
by, ..., b are fixed and we choose local connections for these singular points.
For the local connections at the regular singular points si,..., s, we make a
choice which fits infinitely many of the p,. The local data at the other points
ar,...,b; are just the negatives of the corresponding points in {by,...,s,}.
As in the proof of Proposition 3.25, there exists an infinite subset I of N, such
that the corresponding vector bundles M,, have the same type. This defines
the moduli problem and the moduli family, parametrized by some space M.
According to Proposition 3.22, M(U(G°) C,C G) is constructible. Let H
denote the image of the group U(G®°) x T} in G. Then it can be seen that
M(H C, C @) is also constructible. The final part of the proof of Proposition
3.25 applies here as well and the result is that M(= G) is not constructible.
O

Remarks 3.29 Another formulation of the Singer condition.
(1) The constructions in Lemma 3.23, Lemma 3.24, Proposition 3.25 and
Theorem 3.27 lead to the following observation.

A linear algebraic group G does not satisfy the Singer—condition if and only
if it has a factor group H of dim > 1, with the following property: There
exist integers N, M, 1 > 1 such that every algebraic subgroup K C H which
is mapped surjectively to H/H® contains an algebraic subgroup of index < I
which 1s, as algebraic group, generated by N elements of order < M.

(2) Theorem 3.27 remains valid for an algebraically closed field C' that is
not algebraic over Q (See Remarks 3.26).

(3) For Theorem 3.15 to hold, it is essential to consider families of differ-
ential equations on P!. For example on an elliptic curve E over C, one can
construct a family of differential equations parametrized by some X, such
that X (= C*) is not constructible (see [S93] p.384). If this family is pushed
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down to P} then after a shift one obtains the Lamé family we considered in
Example 3.8. °
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Chapter 4

The Riemann-Hilbert problem
and examples

In this chapter we will give some examples of moduli spaces of differential
equations, and we describe the connection with the Riemann-Hilbert prob-
lem.

4.1 The classical Riemann-Hilbert problem

We start by briefly recalling the classical Riemann-Hilbert problem as de-
scribed in [PS03] Chapter 6.

Let (M,V) be a regular singular connection over C(z) with singular locus
equal to S = {s1,---,s,} C P&. This means that M is a finite dimensional
C(z)-vector space, and V : M — C(z)dz® M is a regular singular connection
(see [PS03] 6.4.2). One defines a monodromy map associated to (M, V) in
the following manner. Write V' := ker(C((z — b)) ®c,) M, V) for the local
solution space at a regular point b € P¢. \ S and define m; := m (Pg \ S, b).
Let A € m; be a loop, then we can make an analytic continuation of the local
solutions V' along A. This analytic continuation defines a linear map on V/,
so we can associate an element of GL(V) to A. This process results in a
map m; — GL(V), called the monodromy map. The question if for any given
representation p : m; — GL(V) there is a regular singular connection with

109
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monodromy representation equivalent to p is known as the weak Riemann-
Hilbert problem. This question has a positive answer, which is precisely
formulated in [PS03], Theorem 6.15.

The strong Riemann-Hilbert problem asks whether for a given representation
p: m — GL(V) there is a Fuchsian connection over C(z) with monodromy
representation equivalent to p. A Fuchsian connection is a connection which
for the differentiation 2 can be written in the form £ + 377 Zf—isi, with
A; € M,,(C). In general, for a given p there is no such Fuchsian connection.
However under some conditions on p the strong Riemann-Hilbert problem

has a positive answer, see sections 6.4 and 6.5 of [PS03] for details.

The strong Riemann-Hilbert problem can be restated in terms of connec-
tions on vector bundles. For a connection (M, V) on P (where M is not
necessarily free), we get an induced connection (M,,, V,) over C(z) by local-
ization at the generic fibre. Therefore we can associate a monodromy map to
(M, V). It is easily seen that the strong Riemann-Hilbert problem precisely
asks whether there is a connection on a free vector bundle with some given
monodromy map.

For a representation p : m — GL(V), by [PS03] Theorem 6.15, we find
an associated connection (M, V) over C(z). The following lemma states how
we can associate a connection over Pg to (M, V).

Lemma 4.1 (Lemma 6.18 of [PS03]) Let (M,V) be a reqular singular
connection over C(z) with singular locus S. For every s € S we choose

a local parameter ts. For every s € S let Ay C J\//fs :=C((t5)) ® M be a lattice
that satisfies V(A;) C ‘% ® A (the existence of such a lattice is equivalent to
(M, V) being regular singular at s). Then there is a unique regqular singular
connection (M, V) on Pg with singular locus in S such that:

1. For every open U C Pg, one has M(U) C M.
2. The generic fibre of (M, V) is (M, V).
3. M\S =A; forall s € S.

In the case where (M, V) is irreducible, one can make a choice for the lat-
tices A in such a way that the corresponding vector bundle M is free (see



4.2. THE RIEMANN-HILBERT PROBLEM 111

Theorem 6.22 of [PS03]). For general (M, V) this is not always the case.

We will conclude by briefly describing how a connection (M, V) on P§ with
a prescribed monodromy representation can be constructed. We will use a
generalization of this construction in the next section.

Write U := Pg \ S, so m = m(U,0). We start by constructing a regu-
lar connection on U with the prescribed monodromy. For this consider the
universal covering u : U — U of U. Define a connection (N, V) on U by
N =C"®0z and V(v ® f) =vQ® f' for allv € C*, f € Op. Furthermore
we define a mj-action on N by A(v ® f) = p(A)(v) @ (f o )\_1) V A€ m. The
vector bundle N corresponds to the geometric vector bundle C™* x (N] and the
corresponding i-action is given by A(v, @) = (p(A)(v), A(@)), v € C*, G € U.
Indeed in this way we get for a section h X id : U — C" x [7 he N(U ) that
(A(h) x id)(@) = A(h x id(A~(@))). Tt is clear that the quotient 7 \ (C* x U)
defines a geometric vector bundle on U = 7 \ 17, with corresponding vector
bundle My := N™. The m-action on N/ commutes with V. So we find an
induced connection Vi on My. Write £ := ker(Vy, My). The only thing
left to show is that L is the local system corresponding to p. There is a one to
one correspondence between local systems on U and (trivial) local systems on
U with a mi-action. Under this correspondence £ clearly corresponds to C*
with the defined 7i-action which is given by p. This proves that (My, Vi)
has monodromy given by p.

We now want to extend this connection (My, Vi) to a connection on P§. Let
s € S, and consider the pointed disk U} := 0 < |z —s| < €. We will construct
a connection on U := |z — s| < € that glues to the restriction of (My, Vi)
to U;. For this we consider the local solution space V; at s + 5. The circle
around s through s 4 § induces a monodromy map B € GL(V;). Choose
A € End(V) such that >4 = B, then we define the connection V, on the
vector bundle M; := Oy, ® V; by Vi(f®v) =df ® v+ 2z ' ® A(v). The re-
striction of (M, V) to U clearly has local monodromy B. By [PS03] 6.6-3
this restriction is isomorphic to the restriction of (My, V) to Ur. Therefore
we can glue the connection (M, V) to (My, V). In this way we obtain
the desired connection (M, V) on Pg extending (My, Vi ).
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4.2 The Riemann-Hilbert problem for fami-
lies

We will now consider the Riemann-Hilbert problem for families of differential
equations. Let Y be an analytic manifold, and let S := {s1,---,s,} be a
set of points in Pg \ {0,00}. Suppose that (M, V) is an analytic family of
differential equations on P!, parametrized by Y (the definition of an analytic
family is a straightforward variation of Definition 3.13). We suppose that S
is the set of singular points of V; more precisely, for every y € Y the set of
singular points of V(y) is S.

We write pri : Y x P! — Y, pry : Y x P! — P! for the two projection
maps. Let U :=P'\ S, and 7 := 7 (U,0). We will also write pry, pry for
the restrictions to Y x U of the two projection maps. The kernel £ := ker(V)
of V|y«p is a locally free pri(Oy)-module of rank n, where n = dim(V). For
any a € U the embedding j, : Y 2 Y x {a} — Y x U defines a vector bundle
Lo:=7i(L)onY .

We will now define a monodromy map m — Aut(Ly). Let A :[0,1] — U be
a path in U. Then (id x A\)*(£) is a pr*(Oy)-module on Y x [0, 1], where
pr: Y x[0,1] — Y is the projection map. Since (id x A\)*(L) is a locally
free sheaf, we find a canonical isomorphism Ly AN L. In particular,
a closed path A with A(0) = 0 € P yields an automorphism of £, and this
defines a homomorphism m — Aut(Ly).

Definition 4.2 We call the map m; — Aut(L) constructed above, the mon-
odromy map associated to (M, V). o

We now present a converse construction, which we interpret as a solution to
the Riemann-Hilbert problem for families.

Theorem 4.3 LetY be an analytic irreducible reduced manifold with a vec-
tor bundle L on it. Suppose we are given a set S := {sy,---,s,} C P& and
a representation p : m (Pt \ S) — Aut(L) satisfying the following properties.

o Let \; € m be loops around the points s; with Hle A = 1. For every
y € Y we have that p(X\;)(y) ~ e*™4i for some fived A; € M,,(C). Here
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p(Xi)(y) denotes the automorphism on L,/(myL,) =2 C"* induced by
p(Ai).

e None of the differences of the eigenvalues of A; is in Z \ {0}.

Then there exists an analytic connection (M, V) on'Y x P!, with singular
points in S and monodromy map given by p.

Proof. We can cover Y by Stein-manifolds Y; such that L|y; is free for all 7.
We will now construct a solution to the Riemann-Hilbert problem for families
over Y;. From the construction it can be seen that the connections on the
Y; glue to a connection on Y with the appropriate monodromy map, hence
this also solves the Riemann-Hilbert problem for families over Y. From now
on we assume L to be free and Y to be a Stein-manifold, and p is given as a
homomorphism p : 7 — GL,(O(Y)).

Let U be the universal covering of U. We can identify m; with Aut(U/U).
Write pr1 : Y xU = Y, pro: Y x U — U for the two projection maps. The
vector bundle V' := O} -~ can be written as pri (O%)®pry ' (Og), where ®
is an “analytic tensor product”, as defined in [GR71] p.179.

Remark 4.4 We note that pri'(Oy) are the analytic functions on Y x U
which are constant with respect to U. The sheaf pri (Oy) ®c pry "(O3) (the
usual tensor product over C) consists of functions of the form Y 7", f; - g,
where the f; are constant with respect to U and the g; are constant with
respect to Y. Therefore the sheaf pri'(O%) ®c pry (Og) consisting of n-
tuples of such functions is much smaller then N . °

We will now define a connection (My, Vi) on Y x U by a construction sim-
ilar to the one in the previous section. Define a 7-action on N given by the
formula A(v®f) = p(A)v@(f o A7') for v € pry ' (OF), f € pry'(Op), and
A em = Aut(U/U). Let My := N'™, then My defines a vector bundle on
Y xU. Let V: N _>N®Q(Y><[7)/Y be given by V(v ® f) = v ® df. The
connection V commutes with the mi-action, and we get an induced connec-
tion (My,Vy) on Y x U with monodromy representation given by p.

Now we will extend (My, Vi) to a connection on ¥V x PL. Let s € S,
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and let Of := {z € U|0 < |z — s| < €} be a small neighborhood of a. The
inverse image of O} under the natural map v : U — U consists of a number
of connected components. Let O be one of them, then w : O — 0} is a
universal covering ([F77] Section 31.4). Let A € m; be a loop around s. The
subgroup of 7, mapping O, to itself is cyclic with generator .

Lemma 4.5 Let Y be an irreducible Stein manifold over C and A € M, (C)
a matriz with the property that the differences of the eigenvalues of A are not
in Z\ {0}. If M € GL,(O(Y)) satisfies M(y) ~ > Y y € Y, then there
ezists B € M, (O(Y)) with M = *™8 and B(y) ~ AV yeY.

Proof. Let K := Frac(O(Y)), and let yy, - - -, p1,, be the distinct eigenvalues
of A. Write v; := €*™#i then vy,---,v, are the distinct eigenvalues of M.
We can make a decomposition M = M ,M,, with M, semi-simple and M,
unipotent. One can write M,s and M_! as polynomials in M with coeffi-
cients in C, so My, M,, € GL,(O(Y)). Let V; := ker(M,; — v;1, K™), then
=Vi@®---®V,. Forwe O)" we can write w = wy + - - - + w,, with

w; € V;. Now M} (w) = vi"w; + -+ - +v'w, € O(Y)", m > 0. Using the fact
1 v e ,,f

that the Vandermonde matrix ( : : ) is invertible, we see that all

p
1 vy - VB

w; € O(Y)", so we can write O(Y)" = &W,;, W; := ker(M,s — 1,1, O(Y)").

Let Bss € M, (O(Y)) be the linear map that acts as multiplication by u; on
Wi, and let B, be defined as the finite sum ;5 322, G (M, —1)7. We will

27 j=1
show that B := B,, + B,, satisfies the lemma. We have that e2™Bss = M.,
and e*™B» = M, Since B,, and B, commute it is clear that M = ?>™B.
Furthermore "B ~ ¢2m4 v y € Y, and the eigenvalues of B(y) and A

correspond. By construction we have B(y) ~ AVyeY. O

We find that we can write p()\;) = e*™5 B; € M,,(O(Y)), with B;(y) ~ 4;
for all y € Y. Let s = s; be the singular point we fixed, then we write B for
B;.

For notational convenience we replace the covering u : 55 — OF by the
covering exp : C — C*, z — €?™*. The group Aut((C/C*) is generated by
t: 2+ z+ 1. The restriction of N to Y x C is pr; }(0%)®pry* (Oc), and
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we want to calculate (N, V) explicitly. So we have to calculate the action
of t € Aut(C/C*) on N|yxc. Let v(y, z) be a section of N|yyc. Using the
explicit description of the 7 -action on N given in the beginning of this con-
struction we find t(v(y, 2)) = 2™ Bu(y, z — 1). Write v(y, 2) = e2™B7w(y, 2),
then the condition ¢(v) = v is equivalent to w(y,z) = w(y,z — 1). So
t(v) = v < w(y, z) = W(y, €¥™*) for some section w of OF .

We find that (N|yxc)® = OL, . is a free vector bundle on Y x C* with
generators {fi, -, fau}, fi = €?™P?¢;, where {e1,---,e,} is the standard
free basis for O}, .. Furthermore V is given by V(f;) = 2miB f;dz. We have
that u := €?™ is a parameter on C*, and we find V(f;) = Bf;%. Using this
formula, we can extend the connection ((N|yxc)®, V) on C* to a connec-
tion on C D C*. In this way we can make an extension of (My, Vy) to a
connection on Y x P 0

In the following we want to construct a family of differential equations
parametrized by a certain space of monodromy representations. Suppose we
are given regular singular moduli problem in the sense of Chapter 2, with data
(Vi {s1,--, 8}, {%j—i— %};Zl), C; € GL(V). Consider the set of correspgnd—
ing monodromy representations M := {p € Repr(m,V)|p(};) ~ e 2™Ci},
We can identify M with the set {(My,---, M,)|M; ~ e ™% [T"_, M; = I}
by identifying p with {p(A1),---, p(A\)}-

Lemma 4.6 The set M is a Zariski constructible subset of GL(V)" and, if all
matrices C; are diagonalizable, even Zariski closed. Furthermore the subset
of M consisting of irreducible representations is also Zariski constructible.

Proof. It clearly is sufficient to prove corresponding statements for the set
M’ obtained by dropping the condition [[;_, M; = I. In proving the first
statement, we may suppose r = 1. For a diagonal matrix C' € GL(V') with
characteristic polynomial Py = [[(T — p;)™, the set {ACA™'|A € GL(V)}
is given by {B € GL(V)|Pg = Pg, rank(B — u;I) = n —m; V i}. The latter
condition is equivalent to the condition that the determinant of all [ x [-
submatrices of B — p; I, with [ > n—m,, is zero. This clearly defines a closed
set. For an arbitrary matrix C' € GL(V'), we have that B is similar to C if
and only if Pg = P, and rank((B —pl)™) = rank((C—pl)™),m =1,--- ,n,
for every eigenvalue u. This defines a constructible set. To be precise,
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rank(A) < m defines a closed subset of GL(V), so rank(4) = m defines
a constructible subset.

We will now prove the second statement. Note that the set of matrices in
GL(V) that leave a line C-v, v € V invariant is given by {M|Mv Av = 0},
where A denotes the exterior product. So the set of tuples (M, - -, M)
that leave a line invariant is obtained by first taking the kernel of the map
V\{0} x GL(V)* — C*, (v, My,---, M) — (Myv Av,---,Msu Av) and
then taking the projection of this kernel onto GL(V)*. This clearly defines
a constructible set. The matrices that leave a subspace of dimension [ < n
invariant, are the matrices that leave a decomposable line in /\l V invariant.
This also defines a constructible set. Since the complement of a constructible
set is constructible, this proves the lemma. O

The family M of representations gives rise to a family of differential equa-
tions parametrized by M, according to Theorem 4.3. In more detail, given
A € 7y, a representation m € M yields an element m(\) € GL(V). This
defines a morphism p(A) : M — GL(V) which we regard as an element
p(A) € GL(O(M)®V'). We obtain a representation p : 1 — GL(O(M)®V).
By Theorem 4.3 the representation p gives rise to a family of differential equa-
tions (M, V,V, d% + %) parametrized by M. For m € M, the monodromy
representation of (M (m), V(m)) is clearly congruent to m. By the classical
Riemann-Hilbert theorem, and Lemma 4.1 the connection (M (m), V(m))
is unique up to isomorphism.

We conclude this section by a lemma on the local invertibility of the expo-
nential map. It states that under more general conditions than in Lemma 4.5
one can still locally construct a logarithm.

Lemma 4.7 The map E : My(C) — GL4(C), A s €2™4 is locally invertible
in A if and only if \i — \; & Z\ {0} for all couples of eigenvalues \;, A; of A.

Proof. We start by proving that if there are two eigenvalues A;, Ay of A with
Ai — Aj € Z\ {0}, then E is not locally invertible. Write A = SJS !, with J
in Jordan normal form. We will show that there exists a matrix B # 0, with
E(J +eB) = E(J),e2 = 0 (where we use the extension of F to a map on
M, (Cle))). If E(J +eB) = E(J) then also E(A +eSBS™!) = E(A) holds.
We can suppose that J has only two eigenvalues A\, A +m,m € Z \ {0} and
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only two Jordan blocks of size j and d — j respectively. Subtracting A - Id
from J, we may assume that .J has eigenvalues 0, m. Define B by B, ,; =1,
and zeros everywhere else. Then JB = mB, BJ = 0. It follows that

E(J+eB)-E(J) = () (277;—?)72 i: B e = (3 (227?)”7”“—13)5 =

1 .
— (¢ — 1)Be = 0.

To proof the converse, again write A = SJS™!. We will first consider the
case where J is a diagonal matrix. For a matrix B with only one nonzero
entry B;; = 1, we have that E(J+¢eB)— E(J) also has (at most) one nonzero
entry at the same place. The fact that the remaining coefficient is nonzero

follows from an explicit calculation in the case J = ( g g\ ),)\ ¢ 7. We con-

clude that the derivative of E at A is bijective. For the general case, write
J =D+ N, where D is diagonal, N is nilpotent, and ND = DN. We will
use the matrix norm ||A|| = max{|A4;;|,1 <i,j < d}, which has the property
|IAB|| < d||A||||B||- The idea of the proof is as follows. Local invertibility at
J is equivalent to local invertibility at a conjugate SJS~!. We can pick S
such that ||SNS~!|| becomes arbitrary small. An estimate then shows that
local invertibility at SDS~! implies local invertibility at SJS~!.

We have
(2mi)" —
E(J+eB)—-E(J) = ( JPBJ" 1 P)e =
n§>:1 n! pi_%

. n—1
2 n
&_Z ( Z,TL;L) Z(Jp . Dp)BJnflfp + DpB(Jnflfp . anlfp_i_

n>1 T p=0
\p n—1
(27.”)7& X Y4 n—1—p
> S Y DPBD"'P
n>1 p=0
Write a == || >, 5, (27;?” Zz;é DPBD™ 7?||. Then a > 0 by the argument

above. We can make the following estimate:

(271"1,)” — n—1—
1D === "B >

n>1 ’ p=0
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. ||Z (271

n>1 )

Write 0 := ||N||, s := || D||,t := s + 6. We will now use the estimate

p p
1P~ D?|| = IN S (Z) DPENFT < dPs ) (i) sPTRERL < dPptP s,
k=1 k=1

Writing b := || B||, we find that

||Z 277;2 ZJpBJn 7| >
s

n>1

Np N1
,) > (J? = D")BJ* P+ DPB(JV P — D).
p=0

n—1

2mri )" e n—p—

a—> % Y AT (pt? BT S 4 (n — 1 — p) bt P T0) =
n>1 p=0

—Z (2mi)" Zdn Hn—1)£"%h5 = a— (Z (27ri)nn(n_1)(dt)nf2)db5 —

n>1 n! n>1

. (27”) n ; e
— (2mi)*) ——(dt)")dbd = a — (27i)2e*™ 4 dbe.
n>0
So for any matrix B, we can pick a basis (and therefore a small ¢), such that
|E(J+¢eB) — E(J)|| > 0, which shows that E is locally invertible at .J, and
therefore at A. a

For a vector bundle M obtained by Theorem 4.3, there can be points y € Y
such that the induced vector bundle M(y) on P¢ is not free. This situation
already appears in the Lamé example as we will see later on. Before we get to
the Lamé example, we will first study connections on non-free vector bundles
in detail.

4.3 Connections on non-free vector bundles

We will now give a precise description of connections on non-free vector bun-
dles, and construct a fine moduli space for such connections.
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Let M = O(a1) ® -+ ® O(an), a1 > -+ > a, be a vector bundle, and
D = Y7 ki[si] a divisor of degree k = >",_, k;, with all s; # co. We
can write O(a;)(Uy) = Clzle;, O(a;)(Uy) = Clz7t]f;, with f; = 2%e;. A
connection V : M — Q(D) ® M is given by two connections on the free
vector bundles M (Uy), M (Ux), say Vo : M(Uy) — (D) (Up) ® M(Up) and
Voo : M(Ux) = Q(D)(Us) @ M(Uy,) that glue on Uy N Uy,. We have that
Q(D)(Uy) = Cl7] I dztkl (where as always ¢, = z—s;), so V is given by a C[z]-
1

T
=1

linear map A on C[z|{eq, - - ,e,), taking Vy(e;) = A(ei)fiztkl. We wil also
=17
write A for the matrix of A on the basis {e1,- - ,e,}. In the same way the

connection Vo, is defined by V. (f;) = B( fi)ﬁ, with B given by a ma-
1=1"

trix B € M, (2*=2C[z7!]). For the connections V, and V, to glue, we must
have V(2%e¢;) = Voo (fi). This translates into [[]_, ¢/ a;2% ' +2% Ay = 2¢ By
forie =1,---,n and 2% A;; = 2%B;; fori,j = 1---n, i # j. From this we
obtain the following properties for A:

L] deg(AU) §k+ai—aj—2fori7éj,
® deg(Azz) =k - 17

e A, has as highest order coefficient —a;.

Conversely, a matrix A € M, (Clz]) satisfying these properties defines a con-
nection on M.

In the following we will use the group of automorphisms of M, so we give
an explicit description of it. An automorphism ¢ of M is given by a
Clz]-linear automorphism of M(U,) and a C[z7!]-linear automorphism of
M(Uy) that glue. So 1(Up) is given on the basis {e1,---,e,} by a matrix
A € GL,(C]z]). Furthermore 9(Uy) is given on the basis {f1,---, fn} by a
matrix B € GL,(C[z7']) with B = Z7'AZ, where Z is the diagonal matrix
with Z;; = 2%. Let ay,, - ,a,, be the subsequence of a1, -, a, consisting
of a; and the q; with a; — a;_; < 0. Then we can write A in block form

Ay - Ay
A= 0 :
. AI’P
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Here the A;; € GLy,,,,—,(C) (where we take n,; = n+1) and the coefficients
of Ay, © > j are polynomials of degree < a,, — a,;. Conversely any such
matrix A defines an automorphism of M.

4.3.1 Moduli spaces of non-free connections

We will define a moduli space of connections on a vector bundle of some
fixed type associated to a data set (V, {s1,---, s}, {% + B;}7_,) as in Chap-
ter 2. We fix an ordered basis for V, say {e;,---,e,}. Define a vector
bundle M of type (a1, - ,a,), a1 > -+ > a, by M(Uy) = Clz]  V,
M(Uy) = Clz 7 |®(®Cz%¢;). We fix a type (a, - ,a,) with a; —a, < 7-1,
and we will only consider connections on the corresponding vector bundle M.
Note that in case M has rank 2, and there exists an irreducible connection
on M, then by [PS03] Proposition 6.21 we get a; —a; < r — 2.

We start by defining a functor F* in a similar way to the definition of F in
Chapter 2, but now we do not divide out equivalence.

Definition 4.8 The functor F* : {C-algebras} — {sets} is defined as fol-
lows. For any C-algebra R, the set F*(R) consists of the tuples (A, {¢:}i_,),
where:

o A € M,(R[#]) satisfies deg(A;;) < k+ a; —a; —2 for ¢ # j and
deg(Ay;) = k — 1. Furthermore A;; has as highest order coefficient —a;.

e the ¢; = Z;io (7)) (t:)?, ¢i(§) € M, (R) are automorphisms of R[[t;]]".

o (L + A g, = 4+ B, i=1,---,s, where we see —A4 — and
R | RS % Ili=1ty
¢; as elements of End(R[[t;][t;']"). This condition can be restated as
¢ = ¢pi—A—5 — Bighi. .
M=t

This functor F7 is represented by a C-algebra of finite type U, as can be
shown in a way similar to the proof of Theorem 2.9. We can also consider F+
as a contravariant functor on schemes of finite type over C. In this setting
F* is represented by M := Spec(U).

We say that two tuples (Ay, {¢1}), (A2, {0?}) € F*(R) are equivalent if there
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exists an automorphism 1) of M® R such that d%+HTA2tkz = % 4 HTAltkl Yo
1=1" 1=1"%
and ¢? = ¢loth, 1 = 1,--- 7 where we consider 9 as an element of GL,(R[z])

and GL, (R[[t;]) respectively. We define a functor F by F(R) = F(R)/ ~.

Theorem 4.9 There is a coarse moduli scheme for the functor F defined
above, which is in fact a quast projective variety.

Proof. Consider the group G := Aut(M). this group acts on M(C) and
we want to make a quotient. We can make an embedding G C GL,(C[z]).
From the description of G' above we see that the degree of the coefficients of
elements of G is bounded by max;_;...,—1(a;—a;11). By our assumption on M
this bound is less or equal to r—2. Therefore the map ¢ : G — GL,,(C)" given
by A(z) — (A(s1),---,A(sr)) is injective. In this way we can consider G as
a linear algebraic subgroup of GL, (C)". By [Br69] Theorem 6.8, the quotient
GL,(C)" /G exists and is given by (Q, ), 7 : GL,(C)" — Q, with @ a quasi-
projective variety. Let ¢ : M — GL,(C)", (A4,{#i}) — (61(0),---,¢,(0)) be
the projection map. We want to use the following proposition to prove that
a geometric quotient M/G exists and is quasi-projective.

Proposition 4.10 (Proposition 7.1 of [MFK94])

Let G be a group scheme, flat and of finite type over S. Let X and Y be
schemes of finite type over S, let o and T be actions of G on X and Y, and
let ¢ : X =Y be a G-linear morphism. Assume that'Y is a principal fibre
bundle over an S-scheme @, with group G, and with projection 7w : Y — Q.
Assume that there exists an L € Pic%(X) which is relatively ample for ¢, and
that Q is quasi-projective over S. Then there is a scheme P, quasi-projective
over S, and an S-morphism w : X — P such that X becomes a principal
fibre bundle over P with group G, and projection w.

This needs some explanation. A principal fibre bundle is defined as follows:
let 0: G xg X — X be an action, with a geometric quotient (Q, ), then X
is a principal fibre bundle over ) with group G if

e 7 is a flat morphism of finite type,

e the map (0,pry) : G xs X — X Xg X C X Xg X is an isomorphism.
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By Proposition 0.9 of [MFK94] for a free action of an algebraic group G on
an algebraic scheme X with geometric quotient (@, 7), the scheme X always
is a principal fibre bundle over ) with group G.

We further remark that Pic®(X) is the group of G-linearized line bundles
on X. For details see [MFK94].

We want to apply this proposition with S = Spec(C), X =M, Y = GL/,
and G, ¢, Q, 7 as above. There are a number of conditions to be checked.

(1) ¢ is G-linear.
(2) GL; is a principal fibre bundle over @ with group Aut(M).

(3) There exists an L as in the proposition.

Condition (1) is clearly fulfilled. For the line bundle L in (3) we can take
the trivial line bundle since M is affine. By Proposition 0.9 of [MFK94] for a
free action of an algebraic group GG on an algebraic scheme Y with geometric
quotient (@, ), the scheme Y always is a principal fibre bundle over ) with
group G. So to prove (3) it suffices to show that the action of G on GL! is
free, and that @) is a geometric quotient. The action being free means that
(o,pre) : G x GL] — GL; x¢g GL] is a closed immersion, which is the case.
The fact that (Q,7) is a geometric quotient follows from the definition of a
quotient in [Br69].

We will now proof that P is a coarse moduli scheme for F by an argu-
ment as in the proof of Proposition 5.4 of [MFK94]. There is a natural
isomorphism ¢ : F© — Hom(x*, P), which induces a natural isomorphism
¢ : F — Hom(x, P). For (P, ¢) to be a coarse moduli space, the folowing
conditions have to be verified.

e for every algebraically closed field k£, the map
¢(Spec k) : F(Spec k) — Hom(Spec k, P)
is an isomorphism.

e given a scheme N and a morphism ¢ : F — Hom(x, N), there is a
unique morphism x : Hom(x, P) — Hom(x, N), such that ) = x o ¢.
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The first condition is verified since (P,w) is a geometric quotient. To proof
that the second condition is verified, consider the element id € (M) induced
by id € FH(M) = Hom(M,M). To a morphism ¢ : F — Hom(*, N), we
associate the morphism f := vn(id) : M — N. This induces a bijection of the
set of morphisms from F to representable functors and the set of morphisms
f:M — N with N a scheme. It follows that the second condition is verified,
and therefore (P, ¢) is a coarse moduli space. O

4.4 The Lamé equation

We will now consider the moduli problem with data

d 1L 0
R 4 4
(oo g+ (0 )
The corresponding set of “monodromy representations” M defined above
is given by M = {(My,---, My)|M; ~ ((1’ N ),H?ZlMi = 1}. Write

M; = ( Pi 4 ), i = 1,2,3, then he coordinate ring of M is given by

Ti —Di

R:= C[p1,Q1,7'1,p2,(I2,7“2,p3, Q37T3]/Iv
I={pi+qri+1,p5+q@ro+1,p5 +qrs+ 1, f)

[ 1= —D3qaor1 + P2gsT1 + P3qiT2 — P1G3T2 — P2q1T3 + P1GaT 3.

The following properties of M are known (but also easily verified).

e M is a five dimensional variety.

e The group PGLy(C) acts on M (by conjugation) and on its coordinate
ring R. The ring RP6"2 = Clty, to, t3]/ (3 +13+13+11tat3 —4) is the ring
ofinvariants, where t1 = TI"(MQM:),), 1o 1= TI"(MlMg), t3 = TI'(MlMQ).
This follows immediately from [Bo03] Section 2.

e The variety M := Spec(RP%™2) has 4 singular points, namely
(t1,t2,t3) € {(-2,2,2),(2,-2,2),(2,2,-2),(-2,—2,-2)}. Each one
of these points corresponds to multiple PGLy(C)-orbits. After delet-
ing the 4 singular points and their preimages in M we obtain a good
quotient under PGLy(C). In particular M is reduced and irreducible.
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e The preimage of the 4 singular points of M"%2 in M precisely consists
of all reducible representations in M.

e The complement M;, is a smooth connected variety.

By Theorem 4.3 we obtain a family of differential equations parametrized by
M, say (M, V,C?, local data ). For every irreducible representation m € M,
the following lemma shows that M(m) is either free, or of type (1, —1).

Lemma 4.11 Let (M, V) be an irreducible connection of rank 2 on Pg with
four singular points such that the sum of the local exponents at each singular
point is 0. Then the vector bundle M is of the type O(a) ®O(—a),a € {0,1}.

Proof. Because the sum of the local exponents of (M, V) is zero at each
singular point, the induced connection A>V on A®> M is everywhere regular.
Since Pg is simply connected, /\2 M is the trivial line bundle, and /\2 V is
the trivial connection. So M is of the type O(a) & O(—a),a > 0. By [PS03]
Proposition 6.21, the defect of M is < 2. This proves the lemma. O

We will now show that the set M(>~Y) := {m € M;,|M(m) = O(1)®O(-1)}
is nonempty.

Proposition 4.12 M®™Y is g non-trivial divisor in M;,.

Proof. By Remark 3.12 (4) we have that M"Y is a divisor. So we only
need to show that MM~V is non-empty. As we saw in Section 4.2 the con-
nection (M(m), V(m)) is uniquely determined for every m € M. Therefore
we only have to construct a connection on O(1) & O(—1) with the correct
local behavior. By the description of connections on non-free vector bundles
above, we get that such a connection is given by a matrix A of the form

A= ag + a1z +a222 — 23 b+ biz+ baz2 + b3zd + byzt
- co d0—|—d1z+d222+23 :

We want that the connection is locally at the points s; formally isomorphic

1 ) . .
to d% + %( : 701 ), so the Laurent series expansion of Atkl at a point
? 4 1=1%
1
s; has to be of the form % + h.o.t., with A; similar to { § _01 ) The
i 4
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A; are of the form ( bi @ ),p? + gir; = 15 for all i, and we can write

Ty —Di
H?:tlk’ = 2?21?_; ( 8 b(;* ) We find that py +ps + p3s +ps +1 = 0,
and ry,r3, 4 are multiples of r;. So we get a 5-dimensional family of tu-
ples (Ay,---, A4, by), and hence a 5-dimensional family X of connections on
O() e O(-1).

. : b dz?
The automorphism group G of O(1)®O(—1) is {( o ot ), a,e # 0}.
A connection given by a matrix A is equivalent to the one given by the ma-
trix A = & 1d' + d~1 AP, with ® € G. We can construct a one dimensional

2% % .
., ) parameterized

by b, with no equivalent elements. In case s; =4, ¢t = 1,--- ,4 this family is

subfamily of X consisting of matrices of the form (

3 6265 2 3 2 3 4
—z 2222 — 3015z + 18002° — 3502° + ba(24 — 502 4 352° — 102° + 2
{( 1 * 23 ( )>,b4EC}.

|

We remark that the above does not imply that M"Y is 1-dimensional.
Indeed, let M be the vector bundle on Pi\/[ given by the Riemann-Hilbert
construction. The type of M(m), m € M is (0,0) or (1,—1), and since M
is irreducible we find by Remarks 3.12 that M~ is an analytic divisor on
M (since MO g nonempty). We find that M®~1 is 4-dimensional, and
so there are isomorphic connections in M=,

We can make similar calculations (which are in fact simpler) for the case
of a free vector bundle. We get a 5-dimensional space of connections, with
an action of the group SLsy. There exists a categorical quotient, which maps
all reducible connections to four points. This 2-dimensional quotient is ac-
tually a geometric quotient on the space of irreducible connections.
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Samenvatting

In deze samenvatting zal ik proberen op, zeg maar, “middelbare school ni-
veau” uit te leggen waar dit proefschrift over gaat. Voor een nauwkeuriger
beschrijving, die echter wel wat meer voorkennis vereist, verwijs ik naar de
Introduction. Maar om echt te begrijpen wat er gebeurt zal men toch de
hoofdtekst in moeten duiken.

Dit proefschrift heet “Algoritmen en moduliruimten voor differentiaalver-
gelijkingen”. Ik zal de woorden in deze titel duidelijk proberen te maken.

Om een differentiaalvergelijking te kunnen maken moet je kunnen diffe-
rentiéren (ook wel “afgeleide nemen” genoemd). Het meest eenvoudige voor-
beeld hiervan is het differentiéren van een functie op de “getallenlijn”, die
door wiskundigen wordt genoteerd als R. De afgeleide functie geeft aan hoe
steil de grafiek van zo'n functie is. Het is wel duidelijk dat je niet van elke
functie de afgeleide kunt nemen. Bijvoorbeeld de functie die breuken naar 1
en andere getallen naar 0 stuurt, springt wild op en neer. Je kunt de gra-
fiek niet eens met één pennenstreek tekenen, laat staan dat je kunt zeggen
hoe steil deze functie is in een punt. Zelfs van functies die je wel met één
pennenstreek kunt tekenen, is het begrip “steilheid” niet altijd gedefinieerd
(denk aan functies met een knik, je kunt niet zeggen hoe steil de functie in
zo'n knik is).

Als je een verzameling functies hebt, dan kun je je afvragen of een gege-
ven functie in die verzameling de afgeleide is van een andere functie in die
verzameling. Bijvoorbeeld de constante functie met waarde 1 is de afgeleide
van de functie f(z) = z. Als je de afgeleide van en functie f schrijft als f’
dan vinden we dus dat de differentiaalvergelijking f' = 1 als oplossing x heeft.
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Een eenvoudige verzameling van functies op R zijn de zogenaamde poly-
noomfuncties. Dit zijn functies als 22, z* + x + 1, etc. De afgeleide van zo'n
functie is ook altijd weer een polynoomfunctie. We kunnen ook de afgeleide
van een afgeleide nemen, en dit schrijven we als f”, dus ()" = (2z)' = 2.
De differentiaalvergelijking f” = 2 heeft dus als oplossing f = 22, maar ook
alle andere polynomen van de vorm z2+a -z + b met b, ¢ constantes, zijn een
oplossing. Het aardige is dat bijvoorbeeld de differentiaalvergelijking f' = f
geen oplossing (ongelijk 0) heeft binnen de polynoomfuncties. Dit kun je
zien als je weet hoe je afgeleides van polynomen moet nemen. Er blijkt dat
de graad (ofwel de hoogste macht van z) bij het afgeleide nemen met 1 af-
neemt, dus de afgeleide van een functie kan nooit gelijk zijn aan zichzelf (op
de functie 0 na). Er bestaat wel zo’'n functie, namelijk e®, maar dat is geen
polynoom functie. We zien dus dat om differentiaalvergelijkingen op te kun-
nen lossen het nodig kan zijn om je verzameling van functies te vergroten.
Hoofdstuk 1 gaat erover hoe je dit moet doen voor differentiaalvergelijkingen
van de vorm f”" 4+a- f'4+b-f = 0, met a en b bepaalde functies. Zulke
differentiaalvergelijkingen noemen we lineaire tweede orde vergelijkingen.

Er zijn een aantal simpele differentiaalvergelijkingen, die we standaard noe-
men met de volgende eigenschap. Elke lineaire tweede orde vergelijking die
voldoet aan een bepaalde voorwaarde, is te schrijven als een variant van
een standaard vergelijking (dit is Kleins stelling). Hierdoor zijn ook de op-
lossingen van zo’n vergelijking te schrijven als varianten van de oplossingen
van die standaard vergelijking. Deze methode (ofwel dit algoritme) is door
Mark van Hoeij geprogrammeerd voor het wiskunde softwarepakket “Maple”.

In hoofdstuk 2 wordt gekeken naar families van differentiaalvergelijkingen.
Deze families bestaan uit vergelijkingen die op een of andere manier wat met
elkaar gemeen hebben. Als de elementen van zo’n familie allemaal speciale
gevallen zijn van een soort “moedervergelijking” dan noemen we deze familie
een moduliruimte. We kunnen voorwaarden opstellen zodanig dat de verza-
meling van alle differentiaalvergelijkingen die voldoen aan die voorwaarden
een moduliruimte vormen.

Bij een differentiaalvergelijking hoort iets wat we een groep noemen, en die
groep geeft informatie over hoe ingewikkeld de oplossingen van de vergelij-
king zijn. Deze groep heet de differentiaal Galois groep. Binnen een familie
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van differentiaalvergelijkingen kunnen we kijken naar de verzameling verge-
lijkingen waarvoor deze groep hetzelfde is. In hoofdstuk 3 wordt iets gezegd
over hoe dit soort verzamelingen eruit zien.

Het laatste hoofdstuk behandeld een oud probleem, namelijk het zogenaamde
Riemann-Hilbert probleem. Hilbert was een beroemd wiskundige, die in 1900
een lijst opstelde met problemen waarvan hij dacht dat ze bepalend zouden
zijn voor de ontwikkeling van de wiskunde. Een van deze problemen, om pre-
cies te zijn nummer 21, is bekend komen te staan als het Riemann-Hilbert
probleem (Riemann is zo mogelijk een nog vooraanstaander wiskundige). Er
is een sterke en een zwakke versie van dit probleem. De sterke versie is alleen
waar in bepaalde gevallen, en de zwakke versie is gewoon waar. Dit Riemann-
Hilbert probleem gaat over het vinden van een differentiaalvergelijking bij een
zekere “monodromie” afbeelding. Ik zal dit hier niet verder uitleggen, maar
één van de nieuwe resultaten in dit proefschrift is dat het ook mogelijk is om
voor een familie van monodromie afbeeldingen een bijpassende familie van
differentiaalvergelijkingen te maken.
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Dankwoord

Om te beginnen, Marius, ontzettend bedankt. Ik zal het niet zo gek ma-
ken als Richard in zijn afstudeerwerk, die je zo ongeveer trouw tot in den
dood beloofde, maar niettemin is mijn dank groot. Ik heb ontzettend veel
van je geleerd, en jouw ideeén zijn van grote invloed geweest op dit proef-
schrift. Door mijn gefiets heeft mijn promotie wel iets langer geduurd dan
eerst gepland, en ik neem aan dat je wel eens gewild zult hebben dat ik wat
meer wiskunde en wat minder wielrennen deed. Ik vind echter dat je hiero-
ver zeer begripvol bent geweest, en het heeft in ieder geval een zeer plezierige
omgang niet in de weg gestaan.

Jaap, Ook jouw ben ik heel veel dank verschuldigd. Toen ik tijdens mijn
VWO opleiding alvast wat wiskunde wilde gaan doen, ben jij daarbij zeer
motiverend en behulpzaam geweest. Mede dankzij jouw heb ik een jaar
in Frankrijk gestudeerd (waar ik wel besmet ben geraakt met het “virus du
vélo”). Tijdens mijn AIO-tijd heb jij veel tijd besteed aan het verbeteren van
mijn schrijfstijl. Ik hoop dat je tevreden bent met het uiteindelijke resultaat.
Verder hebben we grote stukken van het proefschrift nog eens doorgenomen,
en op veel punten verbeterd. Je bent ook altijd bereid geweest me te helpen
bij het oplossen van wiskundige problemen van allerhande aard. Dank hier-
VOOr.

De tijd als AIO in Groningen is me zeer goed bevallen, en dat is voor een
groot deel te danken aan de goede sfeer binnen de AIO groep. De lunches en
koffiepauzes waren vaak erg gezellig. Arie, Barteld, Conny, Dirk-Jan, Ena,
Erwin, Geert, Gert-Jan, Henk, Irene, Jasper, Jeroen, Joost, Jun, Lenny,
Marc, Martijn, Remke, Renato, Richard, Rick, Robert & Robert, Simon en
Theresa hiervoor hartelijk bedankt. Barteld en Remke moet ik ook nog be-
danken voor het verschaffen van riante woonruimte, en Richard voor zijn
last-minute mechaniekerschap. Dankzij Geert kon ik ook op het instituut af
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en toe nog eens over wielrennen praten. Robert, bedankt voor het zijn van
een leuke kamergenoot. 1k heb vast ook nog een paar woorden Duits van je
opgestoken, wat momenteel erg handig is.

Tot slot, Karst en Saakje, bedankt voor jullie interesse, ook al valt het niet
altijd mee om wat zinnigs te zeggen over mijn onderzoek.

Hier zal ik het bij laten, ik ben natuurlijk ook nog dank verschuldigt aan veel
andere mensen die mijn AIO-tijd veraangenaamd hebben, maar een opsom-
ming daarvan wordt wat te gortig. Het moet wel leuk blijven.



